Fixed points and variational principle in uniform spaces
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 3 (2006), pp. 137-142.

Voir la notice de l'article provenant de la source Math-Net.Ru

The main purpose of this paper is to extend the well known Caristi's fixed point result to the setting of uniform spaces. As application, we give an extended form of Takahashi's non-convex minimization theorem.
@article{SEMR_2006_3_a6,
     author = {M. Aamri and S. Bennani and D. El Moutawakil},
     title = {Fixed points and variational principle in uniform spaces},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {137--142},
     publisher = {mathdoc},
     volume = {3},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2006_3_a6/}
}
TY  - JOUR
AU  - M. Aamri
AU  - S. Bennani
AU  - D. El Moutawakil
TI  - Fixed points and variational principle in uniform spaces
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2006
SP  - 137
EP  - 142
VL  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2006_3_a6/
LA  - en
ID  - SEMR_2006_3_a6
ER  - 
%0 Journal Article
%A M. Aamri
%A S. Bennani
%A D. El Moutawakil
%T Fixed points and variational principle in uniform spaces
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2006
%P 137-142
%V 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2006_3_a6/
%G en
%F SEMR_2006_3_a6
M. Aamri; S. Bennani; D. El Moutawakil. Fixed points and variational principle in uniform spaces. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 3 (2006), pp. 137-142. http://geodesic.mathdoc.fr/item/SEMR_2006_3_a6/

[1] M. Aamri, D. El Moutawakil, “Common fixed point theorems for $E$-contractive or $E$-expansive maps in uniform spaces”, Acta Mathematica Academiae Paedagogicae Nyìregyhàziensis, 20:1 (2004), 83–91 | MR | Zbl

[2] N. Bourbaki, Topologie générale, Chaps. I, II, 4 ed., Hermann, Paris, 1965 | MR

[3] J. Caristi, “Fixed point theorems for mapping satisfying inwardness conditions”, Trans. Amer. Math. Soc., 215:3 (1976), 241–251 | DOI | MR | Zbl

[4] I. Ekeland, “On the variational principle”, J. Math. Anal. Appl., 47:4 (1974), 324–353 | DOI | MR | Zbl

[5] I. Ekeland, “Nonconvex minimization problems”, Bull. Amer. Math. Soc. (New Series), 1:3 (1979), 443–474 | DOI | MR | Zbl

[6] A. Hamel, “Remarks to an equivalent formulation of Ekeland's variational principle”, Optimization, 31:6 (1994), 233–238 | DOI | MR

[7] O. Kada ,T. Suzuki and W. Takahashi, “Non convex minimization theorems and fixed point theorems in complete metric spaces”, Math. Japon, 44:7 (1996), 381–391 | MR | Zbl

[8] W. Oettli, M. Théra, “Equivalents of Ekeland's principle”, Bull. Austr. Math. Soc., 48:8 (1993), 385–392 | DOI | MR | Zbl

[9] S. Park, “Some applications of Ekeland's variational principle to fixed point theory”, Approximation Theory and Applications, Res. Notes in Math., 133, ed. S. P. Singh, Pitman, London, 1985, 159–172 | MR

[10] J. Rodriguez-Montes and J. A. Charris, “Fixed points for $W$-contractive or $W$-expansive maps in uniform spaces: Toward a unified approach”, Southwest Journal of Pure and Applied Mathematics, 2001:1 (June 2001), 93–101 | MR | Zbl

[11] W. Takahashi, “Existence Theorems generalizing fixed point theorems for multivalued mappings”, Fixed point theory and Applications, Longman Scientific and Technical, 11, ed. M. A. Théra and J. B. Baillon, 1989, 397–406 | MR