Fixed points and variational principle in uniform spaces
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 3 (2006), pp. 137-142

Voir la notice de l'article provenant de la source Math-Net.Ru

The main purpose of this paper is to extend the well known Caristi's fixed point result to the setting of uniform spaces. As application, we give an extended form of Takahashi's non-convex minimization theorem.
@article{SEMR_2006_3_a6,
     author = {M. Aamri and S. Bennani and D. El Moutawakil},
     title = {Fixed points and variational principle in uniform spaces},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {137--142},
     publisher = {mathdoc},
     volume = {3},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2006_3_a6/}
}
TY  - JOUR
AU  - M. Aamri
AU  - S. Bennani
AU  - D. El Moutawakil
TI  - Fixed points and variational principle in uniform spaces
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2006
SP  - 137
EP  - 142
VL  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2006_3_a6/
LA  - en
ID  - SEMR_2006_3_a6
ER  - 
%0 Journal Article
%A M. Aamri
%A S. Bennani
%A D. El Moutawakil
%T Fixed points and variational principle in uniform spaces
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2006
%P 137-142
%V 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2006_3_a6/
%G en
%F SEMR_2006_3_a6
M. Aamri; S. Bennani; D. El Moutawakil. Fixed points and variational principle in uniform spaces. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 3 (2006), pp. 137-142. http://geodesic.mathdoc.fr/item/SEMR_2006_3_a6/