Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2006_3_a6, author = {M. Aamri and S. Bennani and D. El Moutawakil}, title = {Fixed points and variational principle in uniform spaces}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {137--142}, publisher = {mathdoc}, volume = {3}, year = {2006}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2006_3_a6/} }
TY - JOUR AU - M. Aamri AU - S. Bennani AU - D. El Moutawakil TI - Fixed points and variational principle in uniform spaces JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2006 SP - 137 EP - 142 VL - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2006_3_a6/ LA - en ID - SEMR_2006_3_a6 ER -
M. Aamri; S. Bennani; D. El Moutawakil. Fixed points and variational principle in uniform spaces. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 3 (2006), pp. 137-142. http://geodesic.mathdoc.fr/item/SEMR_2006_3_a6/
[1] M. Aamri, D. El Moutawakil, “Common fixed point theorems for $E$-contractive or $E$-expansive maps in uniform spaces”, Acta Mathematica Academiae Paedagogicae Nyìregyhàziensis, 20:1 (2004), 83–91 | MR | Zbl
[2] N. Bourbaki, Topologie générale, Chaps. I, II, 4 ed., Hermann, Paris, 1965 | MR
[3] J. Caristi, “Fixed point theorems for mapping satisfying inwardness conditions”, Trans. Amer. Math. Soc., 215:3 (1976), 241–251 | DOI | MR | Zbl
[4] I. Ekeland, “On the variational principle”, J. Math. Anal. Appl., 47:4 (1974), 324–353 | DOI | MR | Zbl
[5] I. Ekeland, “Nonconvex minimization problems”, Bull. Amer. Math. Soc. (New Series), 1:3 (1979), 443–474 | DOI | MR | Zbl
[6] A. Hamel, “Remarks to an equivalent formulation of Ekeland's variational principle”, Optimization, 31:6 (1994), 233–238 | DOI | MR
[7] O. Kada ,T. Suzuki and W. Takahashi, “Non convex minimization theorems and fixed point theorems in complete metric spaces”, Math. Japon, 44:7 (1996), 381–391 | MR | Zbl
[8] W. Oettli, M. Théra, “Equivalents of Ekeland's principle”, Bull. Austr. Math. Soc., 48:8 (1993), 385–392 | DOI | MR | Zbl
[9] S. Park, “Some applications of Ekeland's variational principle to fixed point theory”, Approximation Theory and Applications, Res. Notes in Math., 133, ed. S. P. Singh, Pitman, London, 1985, 159–172 | MR
[10] J. Rodriguez-Montes and J. A. Charris, “Fixed points for $W$-contractive or $W$-expansive maps in uniform spaces: Toward a unified approach”, Southwest Journal of Pure and Applied Mathematics, 2001:1 (June 2001), 93–101 | MR | Zbl
[11] W. Takahashi, “Existence Theorems generalizing fixed point theorems for multivalued mappings”, Fixed point theory and Applications, Longman Scientific and Technical, 11, ed. M. A. Théra and J. B. Baillon, 1989, 397–406 | MR