On non-standard Einstein extensions of five dimensional nilpotent metric Lie algebras
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 3 (2006), pp. 115-136.

Voir la notice de l'article provenant de la source Math-Net.Ru

Non-standard Einstein extensions of five-dimensional nilpotent metric Lie algebras are studied in the article. The main result is the following: if there exists a non-standard Einstein extension of a given five-dimensional nilpotent metric Lie algebra $(\frak{n},Q)$, then $\frak{n}$ has the following non-trivial bracket relations: $[X_1,X_2]=X_3$, $[X_1,X_4]=X_5,\,[X_2,X_3]=X_5$ in a basis $\{X_1, X_2, X_3,X_4,X_5\}$.
@article{SEMR_2006_3_a5,
     author = {E. V. Nikitenko},
     title = {On non-standard {Einstein} extensions of five dimensional nilpotent metric {Lie} algebras},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {115--136},
     publisher = {mathdoc},
     volume = {3},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2006_3_a5/}
}
TY  - JOUR
AU  - E. V. Nikitenko
TI  - On non-standard Einstein extensions of five dimensional nilpotent metric Lie algebras
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2006
SP  - 115
EP  - 136
VL  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2006_3_a5/
LA  - ru
ID  - SEMR_2006_3_a5
ER  - 
%0 Journal Article
%A E. V. Nikitenko
%T On non-standard Einstein extensions of five dimensional nilpotent metric Lie algebras
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2006
%P 115-136
%V 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2006_3_a5/
%G ru
%F SEMR_2006_3_a5
E. V. Nikitenko. On non-standard Einstein extensions of five dimensional nilpotent metric Lie algebras. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 3 (2006), pp. 115-136. http://geodesic.mathdoc.fr/item/SEMR_2006_3_a5/

[1] D. V. Alekseevskii, “Sopryazhennost polyarnykh razlozhenii grupp Li”, Matematicheskii sbornik, 84 (1971), 14–26 | MR

[2] D. V. Alekseevskii, “Odnorodnye rimanovy prostranstva otritsatelnoi krivizny”, Matematicheskii sbornik, 96 (1975), 93–117 | MR | Zbl

[3] A. L. Besse, Mnogoobraziya Einshteina, Mir, Moskva, 1990 | MR | Zbl

[4] N. Burbaki, Gruppy i algebry Li, Mir, Moskva, 1978 | MR

[5] E. B. Vinberg, S. G. Gindikin, “Kelerovy mnogoobraziya, dopuskayuschie tranzitivnuyu razreshimuyu gruppu avtomorfizmov”, Matematicheskii sbornik, 74 (1967), 357–377 | MR | Zbl

[6] E. B. Vinberg, V. V. Gorbatsevich, A. L. Onischik, “Stroenie grupp i algebr Li”, Sovr. probl. matem. Fund. napr., 41, VINITI, Moskva, 1990

[7] F. R. Gantmakher, Teoriya matrits, Nauka, Moskva, 1988 | MR | Zbl

[8] V. V. Morozov, “Klassifikatsiya nilpotentnykh algebr Li $6$-go poryadka”, Izvestiya vuzov. Mat., 1958, no. 4, 161–174 | MR

[9] E. V. Nikitenko, Yu. G. Nikonorov, “Shestimernye einshteinovy solvmnogoobraziya”, Matematicheskie trudy, 8:1 (2005), 71–121 | MR

[10] Yu. G. Nikonorov, “Pyatimernye einshteinovy solvmnogoobraziya”, Trudy po geometrii i analizu, Izd-vo In-ta matematiki, Novosibirsk, 2003, 343–367

[11] J. Heber, “Noncompact homogeneous Einstein spaces”, Invent. Math., 133 (1998), 279–352 | DOI | MR | Zbl

[12] G. Jensen, “Homogeneous Einstein spaces of dimension 4”, J. Differential. Geom., 3 (1969), 309–349 | MR | Zbl

[13] J. Lauret, “Finding Einstein solvmanifolds by a variational method”, Math. Z., 241 (2002), 83–99 | DOI | MR | Zbl

[14] Yu. G. Nikonorov, “Noncompact homogeneous Einstein 5-manifolds”, Geom. Dedicata, 113 (2005), 107–143 | DOI | MR | Zbl

[15] C. Will, “Rank-one Einstein solvmanifolds of dimension 7”, Diff. Geom. Appl., 19 (2003), 307–318 | DOI | MR | Zbl