On non-standard Einstein extensions of five dimensional nilpotent metric Lie algebras
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 3 (2006), pp. 115-136

Voir la notice de l'article provenant de la source Math-Net.Ru

Non-standard Einstein extensions of five-dimensional nilpotent metric Lie algebras are studied in the article. The main result is the following: if there exists a non-standard Einstein extension of a given five-dimensional nilpotent metric Lie algebra $(\frak{n},Q)$, then $\frak{n}$ has the following non-trivial bracket relations: $[X_1,X_2]=X_3$, $[X_1,X_4]=X_5,\,[X_2,X_3]=X_5$ in a basis $\{X_1, X_2, X_3,X_4,X_5\}$.
@article{SEMR_2006_3_a5,
     author = {E. V. Nikitenko},
     title = {On non-standard {Einstein} extensions of five dimensional nilpotent metric {Lie} algebras},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {115--136},
     publisher = {mathdoc},
     volume = {3},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2006_3_a5/}
}
TY  - JOUR
AU  - E. V. Nikitenko
TI  - On non-standard Einstein extensions of five dimensional nilpotent metric Lie algebras
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2006
SP  - 115
EP  - 136
VL  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2006_3_a5/
LA  - ru
ID  - SEMR_2006_3_a5
ER  - 
%0 Journal Article
%A E. V. Nikitenko
%T On non-standard Einstein extensions of five dimensional nilpotent metric Lie algebras
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2006
%P 115-136
%V 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2006_3_a5/
%G ru
%F SEMR_2006_3_a5
E. V. Nikitenko. On non-standard Einstein extensions of five dimensional nilpotent metric Lie algebras. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 3 (2006), pp. 115-136. http://geodesic.mathdoc.fr/item/SEMR_2006_3_a5/