What is Boolean valued analysis?
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 3 (2006), pp. 402-427.

Voir la notice de l'article provenant de la source Math-Net.Ru

This is a brief overview of the technique of Boolean valued analysis.
@article{SEMR_2006_3_a42,
     author = {S. S. Kutateladze},
     title = {What is {Boolean} valued analysis?},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {402--427},
     publisher = {mathdoc},
     volume = {3},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2006_3_a42/}
}
TY  - JOUR
AU  - S. S. Kutateladze
TI  - What is Boolean valued analysis?
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2006
SP  - 402
EP  - 427
VL  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2006_3_a42/
LA  - ru
ID  - SEMR_2006_3_a42
ER  - 
%0 Journal Article
%A S. S. Kutateladze
%T What is Boolean valued analysis?
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2006
%P 402-427
%V 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2006_3_a42/
%G ru
%F SEMR_2006_3_a42
S. S. Kutateladze. What is Boolean valued analysis?. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 3 (2006), pp. 402-427. http://geodesic.mathdoc.fr/item/SEMR_2006_3_a42/

[1] Takeuti G., Two Applications of Logic to Mathematics, Iwanami Publ., Tokio; Princeton University Press, Princeton, 1978 | MR | Zbl

[2] Koen P. Dzh., Teoriya mnozhestv i kontinuum-gipoteza, Mir, M., 1968

[3] Gilbert D., “Matematicheskie problemy”, Doklad, prochitannyi 8 avgusta 1900 g., Problemy Gilberta, Nauka, M., 1969, 12–64

[4] Johnstone P. T., Sketches of an Elephant. A Topos Theory Compendium, Oxford Logic Guides, 438, Clarendon Press, Oxford, 2002

[5] Hilbert D., “On the Infinite”, From Frege to Gödel 1879–1931: A Source Book in the History of Science, Harvard University Press, Cambridge, 1967, 367–392

[6] Hofstadter D. R., Gödel, Escher, Bach: an Eternal Golden Braid (20th Anniversary Edition), Basic Books, New York, 1999 | MR | Zbl

[7] Gordon E. I., “Veschestvennye chisla v bulevoznachnykh modelyakh teorii mnozhestv i $K$-prostranstva”, Dokl. AN SSSR, 237:4 (1977), 773–775 | MR | Zbl

[8] Kusraev A. G., Kutateladze C. C., Vvedenie v bulevoznachnyi analiz, Nauka, M., 2005 | MR

[9] Luzin N. N., Tr. Vserossiiskogo s'ezda matematikov v Moskve 27 aprelya–4 maya 1927 g., Glavnauka, M., L., 1928

[10] Gedel K., “Sovmestimost aksiomy vybora i obobschennoi kontinuum-gipotezy s aksiomami teorii mnozhestv”, Uspekhi mat. nauk, 3:1 (1948), 96–149 | MR

[11] Yandell B. H., The Honors Class. Hilbert's Problems and Their Solvers, A. K. Peters, Ltd., Natick, 2002 | MR | Zbl

[12] Kanamori A., “The Mathematical Developments of Set Theory from Cantor to Cohen”, Bull. Symbolic Logic, 1:1 (1996), 1–70 | DOI | MR

[13] Cohen P., “The Discovery of Forcing”, Rocky Mountain J. Math., 32:4 (2002), 1071–1100 | DOI | MR | Zbl

[14] Manin Yu. I., “Georg Cantor and His Heritage”, Trudy MIAN, 246, 2004, 208–216 | MR | Zbl

[15] Dales H. G. and Oliveri G. (eds.), Truth in Mathematics, Clarendon Press, Oxford, 1998

[16] Freiling Ch., “Axioms of Symmetry: Throwing Darts at the Real Line”, J. Symbolic Logic, 51 (1986), 190–200 | DOI | MR | Zbl

[17] Bell J. L., Set Theory: Boolean-Valued Models and Independence Proofs, Clarendon Press, Oxford, 2005 | MR

[18] Shelah S., Proper and Improper Forcing, Springer-Verlag, Berlin, 1998 | MR

[19] Boole G., Selected Manuscripts on Logic and Its Philosophy, Science Networks. Historical Studies, 20, Birkhäuser-Verlag, Basel, 1997 | MR | Zbl