Braids: generalizations, presentations and algorithmic properties
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 3 (2006), pp. 338-341.

Voir la notice de l'article provenant de la source Math-Net.Ru

Classical braid groups admit several types of presentations. The analogues of these presentations are obtained for the genralizations of braid groups. Garside algorithm for the word problem also works for the singular braid monoid.
@article{SEMR_2006_3_a39,
     author = {V. Vershinin},
     title = {Braids: generalizations, presentations and algorithmic properties},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {338--341},
     publisher = {mathdoc},
     volume = {3},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2006_3_a39/}
}
TY  - JOUR
AU  - V. Vershinin
TI  - Braids: generalizations, presentations and algorithmic properties
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2006
SP  - 338
EP  - 341
VL  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2006_3_a39/
LA  - en
ID  - SEMR_2006_3_a39
ER  - 
%0 Journal Article
%A V. Vershinin
%T Braids: generalizations, presentations and algorithmic properties
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2006
%P 338-341
%V 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2006_3_a39/
%G en
%F SEMR_2006_3_a39
V. Vershinin. Braids: generalizations, presentations and algorithmic properties. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 3 (2006), pp. 338-341. http://geodesic.mathdoc.fr/item/SEMR_2006_3_a39/

[1] E. Artin, “Theorie der Zöpfe”, Abh. Math. Semin. Univ. Hamburg, 4 (1925), 47–72 | DOI | Zbl

[2] J. C. Baez, “Link invariants of finite type and perturbation theory”, Lett. Math. Phys., 26 (1992), 43–51 | DOI | MR | Zbl

[3] J. S. Birman, “New points of view in knot theory”, Bull. Amer. Math. Soc., 28 (1993), 253–387 | DOI | MR

[4] J. S. Birman, K. H. Ko, S. J. Lee, “A new approach to the word and conjugacy problems in the braid groups”, Adv. Math., 139 (1998), 322–353 | DOI | MR | Zbl

[5] E. Brieskorn, “Sur les groupes de tresses [d'après V. I. Arnol'd]”, Séminaire Bourbaki, 24ème année (1971/1972), Exp. No. 401, Lecture Notes in Math., 317, 1973, 21–44 | MR | Zbl

[6] M. Broué, G. Malle, R. Rouquier, “Complex reflection groups, braid groups, Hecke algebras”, J. Reine Angew. Math., 500 (1998), 127–190 | MR | Zbl

[7] H. S. M. Coxeter, W. O. J. Moser, Generators and relations for discrete groups, Ergebnisse der Mathematik und ihrer Grenzgebiete, 14, eds. 3rd ed., Springer-Verlag, Berlin, Heidelberg, New York, 1972 | MR | Zbl

[8] P. Deligne, “Les immeubles des groupes de tresses généralisés”, Invent. Math., 17 (1972), 273–302 | DOI | MR | Zbl

[9] E. Fadell and J. Van Buskirk, “The braid groups of $E^2$ and $S^2$”, Duke Math. J., 29 (1962), 243–257 | DOI | MR | Zbl

[10] R. Fenn, R. Rimányi, C. Rourke, “The braid-permutation group”, Topology, 36 (1997), 123–135 | DOI | MR | Zbl

[11] V. Sergiescu, “Graphes planaires et présentations des groupes de tresses”, Math. Z., 214 (1993), 477–490 | DOI | MR | Zbl

[12] Sib. Mat. Zh., 39 (1998), 755–764 | DOI | DOI | MR | Zbl

[13] Usp. Mat. Nauk, 54 (1999), 3–84 | DOI | MR | Zbl

[14] V. V. Vershinin, “On homology of virtual braids and Burau representation”, Knots in Hellas '98 (Delphi), v. 3, J. Knot Theory Ramifications, 10, 2001, 795–812 | MR | Zbl

[15] V. V. Vershinin, On the singular braid monoid, 20 Sep, 2003, arXiv: math.Gr/0309339

[16] O. Zariski, “On the Poincare group of rational plane curves”, Am. J. Math., 56 (1936), 607–619 | DOI | MR

[17] O. Zariski, “The topological discriminant group of a Riemann surface of genus $p$”, Am. J. Math., 59 (1937), 335–358 | DOI | MR