Ideal Turaev--Viro invariants
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 3 (2006), pp. 62-66.

Voir la notice de l'article provenant de la source Math-Net.Ru

Turaev–Viro invariants are defined via state sum polynomials associated to special spines of a $3$-manifold. Its evaluation at solutions of certain polynomial equations yields a homeomorphism invariant of the manifold, called a numerical Turaev–Viro invariant. The coset of the state sum modulo the ideal generated by the equations also is a homeomorphism invariant of compact $3$-manifolds, called an { it ideal Turaev–Viro invariant}. Ideal Turaev–Viro invariants are at least as strong as numerical ones, without the need to compute any explicit solution of the equations. We computed various ideal Turaev–Viro invariants for closed orientable irreducible manifolds of complexity up to $9$. This is an outline of [5].
@article{SEMR_2006_3_a31,
     author = {Simon A. King},
     title = {Ideal {Turaev--Viro} invariants},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {62--66},
     publisher = {mathdoc},
     volume = {3},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2006_3_a31/}
}
TY  - JOUR
AU  - Simon A. King
TI  - Ideal Turaev--Viro invariants
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2006
SP  - 62
EP  - 66
VL  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2006_3_a31/
LA  - en
ID  - SEMR_2006_3_a31
ER  - 
%0 Journal Article
%A Simon A. King
%T Ideal Turaev--Viro invariants
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2006
%P 62-66
%V 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2006_3_a31/
%G en
%F SEMR_2006_3_a31
Simon A. King. Ideal Turaev--Viro invariants. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 3 (2006), pp. 62-66. http://geodesic.mathdoc.fr/item/SEMR_2006_3_a31/

[1] I. Bobtcheva, F. Quinn, The reduction of quantum invariants of $4$-thickenings, Preprint, 2004 | MR

[2] W. Decker, G. Pfister, and H. Schönemann, A Singular 3.0 library for computing Primary Decomposition and Radical of Ideals, primdec.lib, 2005

[3] R. Fröberg, An introduction to Gröbner bases, Pure and Applied Mathematics, John Wiley Sons, Ltd., Chichester, 1997 | MR | Zbl

[4] G.-M. Greuel, G. Pfister, and H. Schönemann, Singular 3.0. A Computer Algebra System for Polynomial Computations Centre for Computer Algebra, , University of Kaiserslautern, 2005 http://www.singular.uni-kl.de

[5] S. King, Ideal Turaev-Viro invariants, 2005, arXiv: math/0509187 | MR

[6] S. King, State sum invariants for Andrews-Curtis problems, Preprint in preparation

[7] http://www.mathematik.tu-darmstadt.de/~king/tvdaten

[8] Maple V Release 5.1. Maple is a trademark of Waterloo Maple Inc.

[9] S. V. Matveev, Algorithmic topology and classification of 3-manifolds, Algorithms and Computation in Mathematics, 9, Springer-Verlag, Berlin, 2003 | MR

[10] V. G. Turaev, Quantum invariants of knots and 3-manifolds, de Gruyter Studies in Mathematics, 18, Walter de Gruyter Co., 1994 | MR | Zbl