Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2006_3_a28, author = {O. V. Borodin and A. O. Ivanova and T. K. Neustroeva}, title = {Sufficient conditions for the minimum $2$-distance colorability of plane graphs of girth~$6$}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {441--450}, publisher = {mathdoc}, volume = {3}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2006_3_a28/} }
TY - JOUR AU - O. V. Borodin AU - A. O. Ivanova AU - T. K. Neustroeva TI - Sufficient conditions for the minimum $2$-distance colorability of plane graphs of girth~$6$ JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2006 SP - 441 EP - 450 VL - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2006_3_a28/ LA - ru ID - SEMR_2006_3_a28 ER -
%0 Journal Article %A O. V. Borodin %A A. O. Ivanova %A T. K. Neustroeva %T Sufficient conditions for the minimum $2$-distance colorability of plane graphs of girth~$6$ %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2006 %P 441-450 %V 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2006_3_a28/ %G ru %F SEMR_2006_3_a28
O. V. Borodin; A. O. Ivanova; T. K. Neustroeva. Sufficient conditions for the minimum $2$-distance colorability of plane graphs of girth~$6$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 3 (2006), pp. 441-450. http://geodesic.mathdoc.fr/item/SEMR_2006_3_a28/
[1] Jensen T. R., Toft B., Graph coloring problems, John Wiley Sons, New York, 1995 | MR | Zbl
[2] Borodin O. V., Glebov A. N., Ivanova A. O., Neustroeva T. K., Tashkinov V. A., “Dostatochnye usloviya 2-distantsionnoi $(\Delta+1)$-raskrashivaemosti ploskikh grafov”, Sibirskie elektronnye matematicheskie izvestiya, 1 (2004), 129–141 http://semr.math.nsc.ru/ | MR | Zbl
[3] Borodin O. V., Ivanova A. O., Neustroeva T. K., “Dostatochnye usloviya 2-distantsionnoi $(\Delta+1)$-raskrashivaemosti ploskikh grafov s obkhvatom 6”, Diskretnyi analiz i issledovanie operatsii, Seriya 1, 12:3 (iyul–sentyabr 2005), 32–47 | MR