On uniformly continuous operators and some weight-hyperbolic function Banach algebra
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 3 (2006), pp. 393-401.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider an abelian non-unitary Banach algebra $\mathfrak{A}$, ruled by an hyperbolic weight, defined on certain space of Lebesgue measurable complex valued functions on the positive axis. Since the non-convolution Banach algebra $\mathfrak{A}$ has its own interest by its applications to the representation theory of some Lie groups, we search on various of its properties. As a Banach space, $\mathfrak{A}$ does not have the Radon–Nikodým property. So, it could be exist not representable linear bounded operators on $\mathfrak{A}$ (cf. [6]). However, we prove that the class of locally absolutely continuous bounded operators are representable and we determine their kernels.
@article{SEMR_2006_3_a26,
     author = {Ana L. Barrenechea and Carlos C. Pe\~na},
     title = {On uniformly continuous operators and some weight-hyperbolic function {Banach} algebra},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {393--401},
     publisher = {mathdoc},
     volume = {3},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2006_3_a26/}
}
TY  - JOUR
AU  - Ana L. Barrenechea
AU  - Carlos C. Peña
TI  - On uniformly continuous operators and some weight-hyperbolic function Banach algebra
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2006
SP  - 393
EP  - 401
VL  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2006_3_a26/
LA  - en
ID  - SEMR_2006_3_a26
ER  - 
%0 Journal Article
%A Ana L. Barrenechea
%A Carlos C. Peña
%T On uniformly continuous operators and some weight-hyperbolic function Banach algebra
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2006
%P 393-401
%V 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2006_3_a26/
%G en
%F SEMR_2006_3_a26
Ana L. Barrenechea; Carlos C. Peña. On uniformly continuous operators and some weight-hyperbolic function Banach algebra. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 3 (2006), pp. 393-401. http://geodesic.mathdoc.fr/item/SEMR_2006_3_a26/

[1] A. Barrenechea, C. Peña, “Some observations concerning to the non existence of bounded differentials on weighted algebras”, Acta Math. Acad. Paedagogicae Níregyháziensis, 19:2 (2003), 215–219 | MR | Zbl

[2] A. Barrenechea, C. Peña, “On innerness of derivations on $S(H)$”, Lobachevskii J. of Math., 18 (2005), 21–32 | MR | Zbl

[3] A. Barrenechea, C. Peña, “Some remarks about bounded derivations on the Hilbert algebra of square summable matrices”, Matematicki Vesnik, 57:4 (2005), 78–95 | MR

[4] J. Diestel, J. Uhl, Jr., Vector measures, Math. Surveys and Monographs, 15, 1977 | MR | Zbl

[5] Dieudonné J., Treatise on Analysis, v. V, Academic Press, N.Y., 1977 | MR | Zbl

[6] N. Dunford, “Integration and linear operators”, Trans. Amer. Math. Soc., 40 (1936), 474–494 | MR

[7] S. Grabiner, Derivations and automorphisms of Banach algebras of power series, Memoirs of the AMS, 146, 1974 | MR | Zbl