On permutations generated by infinite binary words
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 3 (2006), pp. 304-311

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $w=w(1)w(2)\ldots w(n)\ldots$ be an arbitrary non-periodic infinite word on $\{0,1\}$. For every $i\in\mathbb{N}$ we may consider the binary real number $R_w(i)=0,w(i)w(i+1)\dots$. For all $n\in\mathbb{N}$ the numbers $R_w(1),\ldots,R_w(n)$ generate some permutation $\pi_w^n$ of length $n$ such that for all $i,j\in\{1,\ldots,n\}$ the inequalities $\pi_w^n(i)\pi_w^n(j)$ and $R_w(i)$ are equivalent. A permutation is said to be { it valid} if it is generated by some word. In this paper we investigate some properties of valid permutations. In particular, we prove a precise formula for the number of valid permutations of a given length. Also we consider a problem of continuability of valid permutations to the left.
@article{SEMR_2006_3_a20,
     author = {M. A. Makarov},
     title = {On permutations generated by infinite binary words},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {304--311},
     publisher = {mathdoc},
     volume = {3},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2006_3_a20/}
}
TY  - JOUR
AU  - M. A. Makarov
TI  - On permutations generated by infinite binary words
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2006
SP  - 304
EP  - 311
VL  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2006_3_a20/
LA  - ru
ID  - SEMR_2006_3_a20
ER  - 
%0 Journal Article
%A M. A. Makarov
%T On permutations generated by infinite binary words
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2006
%P 304-311
%V 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2006_3_a20/
%G ru
%F SEMR_2006_3_a20
M. A. Makarov. On permutations generated by infinite binary words. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 3 (2006), pp. 304-311. http://geodesic.mathdoc.fr/item/SEMR_2006_3_a20/