Asymptotic profile of solutions for the critical Sobolev type equation on a~half-line
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 3 (2006), pp. 291-303.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study nonlinear Sobolev type equations on half-line \[ \{ \begin{array} [c]{c} \partial_{t}u+\mathbb{L}u=\lambda|u|^{\rho}u_{x}^{\sigma}, x\in\mathbf{R}^{+}, t>0, u(0,x)=u_{0}(x), x\in\mathbf{R}^{+}, \end{array} . \] with $\rho+\sigma=\frac52,\rho>0,\sigma>0,\lambda\in\mathbf{C}$. The linear operator $\mathbb{L}$ is defined as \[ \mathbb{L}=\mathcal{L}^{-1}K(p)\mathcal{L}. \] Here $\mathcal{L}^{-1}$ and $\mathcal{L}$ are Laplace transform and inverse Laplace transform with respect to space variable $x$ and \begin{equation*} K(p)=p^{2}\sum_{j=0}^{m}a_{j}p^{2j}\left(\sum_{l=0}^{m+1}b_{l}p^{2l}\right) ^{-1}, \end{equation*} $m>0$ is integer number.The aim of this paper is to prove the global existence of solutions to the initial-boundary value problem and to find the main term of the asymptotic representation of solutions in the critical convective case.
@article{SEMR_2006_3_a19,
     author = {R. A. Goldstein and M. K. Silva and A. G. Crans},
     title = {Asymptotic profile of solutions for the critical {Sobolev} type equation on a~half-line},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {291--303},
     publisher = {mathdoc},
     volume = {3},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2006_3_a19/}
}
TY  - JOUR
AU  - R. A. Goldstein
AU  - M. K. Silva
AU  - A. G. Crans
TI  - Asymptotic profile of solutions for the critical Sobolev type equation on a~half-line
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2006
SP  - 291
EP  - 303
VL  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2006_3_a19/
LA  - en
ID  - SEMR_2006_3_a19
ER  - 
%0 Journal Article
%A R. A. Goldstein
%A M. K. Silva
%A A. G. Crans
%T Asymptotic profile of solutions for the critical Sobolev type equation on a~half-line
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2006
%P 291-303
%V 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2006_3_a19/
%G en
%F SEMR_2006_3_a19
R. A. Goldstein; M. K. Silva; A. G. Crans. Asymptotic profile of solutions for the critical Sobolev type equation on a~half-line. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 3 (2006), pp. 291-303. http://geodesic.mathdoc.fr/item/SEMR_2006_3_a19/

[1] C. Bardos, P. Penel, U. Frisch and P. L. Sulem, “Modified dissipativity for a nonlinear evolution equation arising in turbulence”, Arch. Rat. Mech. Anal., 71 (1979), 237–256 | DOI | MR | Zbl

[2] C. J. Amick, J. L. Bona and M. E. Schonbek, “Decay of solutions of some nonlinear wave equations”, J. Diff. Eqs., 81 (1989), 1–49 | DOI | MR | Zbl

[3] P. Biler, “Asymptotic behavior in time of solutions to some equations generalizing the Korteweg–de Vries-Burgers equation”, Bull. Polish Acad. Sci. Math., 32:5–6 (1984), 275–282 | MR | Zbl

[4] P. Biler, T. Funaki and W. A. Woyczynski, “Fractal Burgers equations”, J. Diff. Eq., 148 (1998), 9–46 | DOI | MR | Zbl

[5] P. Biler, G. Karch and W. Woyczynski, “Multifractal and Levy conservation laws”, C. R. Acad. Sci., Paris, Ser. 1, Math., 330:5 (2000), 343–348 | MR | Zbl

[6] J. L. Bona, F. Demengel and K. S. Promislow, “Fourier splitting and dissipation nonlinear dispersive waves”, Proc. Roy. Soc. Edinburgh Sect. A, 129:3 (1999), 477–502 | MR | Zbl

[7] J. L. Bona and L. Luo, “Asymptotic decomposition of nonlinear, dispersive wave equations with dissipation. Advances in Nonlinear Mathematics and Science”, Phys. D, 152–153 (2001), 363–383 | DOI | MR | Zbl

[8] D. B. Dix, “Temporal asymptotic behavior of solutions of the Benjamin–Ono–Burgers equation”, J. Diff. Eqs., 90 (1991), 238–287 | DOI | MR | Zbl

[9] D. B. Dix, “The dissipation of nonlinear dispersive waves: The case of asymptotically weak nonlinearity”, Comm. P.D.E., 17 (1992), 1665–1693 | DOI | MR | Zbl

[10] H. Brezis and F. Browder, “Partial differential equations in the 20th century”, Adv. Math., 135:1 (1998), 76–144 | DOI | MR | Zbl

[11] M. Escobedo, O. Kavian and H. Matano, “Large time behavior of solutions of a dissipative nonlinear heat equation”, Comm. Partial Diff. Eqs., 20 (1995), 1427–1452 | DOI | MR | Zbl

[12] M. Escobedo, J. L. Vazquez and E. Zuazua, “Asymptotic behavior and source-type solutions for a diffusion-convection equation”, Arch. Rational Mech. Anal., 124 (1993), 43–65 | DOI | MR | Zbl

[13] Th. Cazenave and F. Dickstein, “On the influence of boundary conditions on flows in porous media”, J. Math. Anal. Appl., 253:1 (2001), 79–106 | DOI | MR | Zbl

[14] V. A. Galaktionov, S. P. Kurdyumov and A. A. Samarskii, “On asymptotic eigenfunctions of the Cauchy problem for a nonlinear parabolic equation”, Math. USSR Sbornik, 54 (1986), 421–455 | DOI | MR | Zbl

[15] Y. Giga and T. Kambe, “Large time behavior of the vorticity of two-dimensional viscous flow and its application to vortex formation”, Commun. Math. Phys., 117 (1988), 549–568 | DOI | MR | Zbl

[16] A. Gmira and L. Veron, “Large time behavior of the solutions of a semilinear parabolic equation in $\mathbf{R}^n$”, J. Diff. Eqs., 53 (1984), 258–276 | DOI | MR | Zbl

[17] M. Escobedo and O. Kavian, “Asymptotic behavior of positive solutions of a non-linear heat equation”, Houston Journal of Mathematics, 13:4 (1987), 39–50 | MR

[18] A. Gmira and L. Veron, “Large time behavior of the solutions of a semilinear parabolic equation in $\mathbf{R}^n$”, J. Diff. Eqs., 53 (1984), 258–276 | DOI | MR | Zbl

[19] G. V. Demidenko, and S. V. Uspenskii, Equations and systems that are not solved with respect to the highest derivative, Nauchnaya Kniga, Novosibirsk, 1998, 437 pp. | MR | Zbl

[20] I. E. Egorov, S. G. Pyatkov, and S. V. Popov, Nonclassical operator-differential equations, Nauka, Novosibirsk, 2000, 336 pp. | MR

[21] A. Favini, and A. Yagi, Degenerate differential equations in Banach spaces, Monographs and Textbooks in Pure and Applied Mathematics, 215, Marcel Dekker, Inc., New York, 1999, 313 pp. | MR | Zbl

[22] N. Hayashi and E. I. Kaikina, Nonlinear Theory of Pseudodifferential Equations on a Half-Line, North-Holland Mathematics Studies, 194, 2004, 340 pp.

[23] N. Hayashi, E. I. Kaikina, P. I. Naumkin and I. A. Shishmarev, Asymptotics for Dissipative Nonlinear Equation, Springer-Verlag, 2006, 557 pp. | MR

[24] N. Hayashi, E. I. Kaikina and P. I. Naumkin, “Large time behavior of solutions to the dissipative nonlinear Schrödinger equation”, Proceedings of the Royal Soc. Edingburgh A, 130 (2000), 1029–1043 | DOI | MR | Zbl

[25] N. Hayashi, E. I. Kaikina and P. I. Naumkin, “Landau–Ginzburg type equations in the sub critical case”, Commun. Contemp. Math., 5:1 (2003), 127–145 | DOI | MR | Zbl

[26] Karch G., “Asymptotic behavior of solutions to some pseudoparabolic equations”, Mat. Meth. in the Applied Sciences, 20 (1997), 271–289 | 3.0.CO;2-F class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[27] O. Kavian, “Remarks on the large time behavior of a nonlinear diffusion equation”, Ann. Inst. Henri Poincaré, Analyse non linéaire, 4:5 (1987), 423–452 | MR | Zbl

[28] E. I. Kaikina, P. I. Naumkin and I. A. Shishmarev, “The Cauchy problem for Sobolev type equation with power like nonlinearity”, Izvestiya, Ser. Math., 69:1 (2005), 61–114 | MR | Zbl

[29] E. I. Kaikina, “Subcritical nonlinear nonlocal equations on a half-line”, Journal of Mathematical Analysis and Applications, 305 (2005), 316–346 | DOI | MR | Zbl

[30] E. I. Kaikina, “Subcritical pseudodifferential equation on a half-line with non analytic symbol”, Diff. Int. Equations, 18:12 (2005), 1341–1370 | MR | Zbl

[31] E. I. Kaikina, “On the complex Rosenau type equations on a half-line”, Adv. Math. (to appear)

[32] E. I. Kaikina and H. F. Ruiz-Paredes, “Landau–Ginzburg type equations on a half-line in the critical case”, Proc. Roy. Soc. Edinburgh Sect. A, 135:6 (2005), 1241–1262 | DOI | MR | Zbl

[33] E. I. Kaikina, “Critical convective type equations on a half-line”, International Journal of Mathematics and Mathematical Sciences (to appear)

[34] M. O. Korpusov and A. G. Sveshnikov, “Tree-Dimensional Nonliner Evolutionary Pseudoparabolic Equations in Mathematical Physics”, Part 2, Computational Mathematics and Mathematical Physics, 44:11 (2004), 1942–1948 | MR | Zbl

[35] Prado R.,Zuazua E., “Asymptotic expansion for the generalized Benjamin–Bona–Majoni–Burgers equation”, J. Diff. and Int. Eq., 15:12 (2002), 1409–1434 | MR | Zbl

[36] R. E. Showalter, Monotone operators in Banach space and nonlinear partial differential equations, Mathematical Surveys and Monographs, 49, American Mathematical Society, Providence, RI, 1997, 278 pp. | MR | Zbl

[37] U. Stefanelli, “On a class of doubly nonlinear nonlocal evolution equations”, Differential Integral Equations, 15:8 (2002), 897–922 | MR | Zbl

[38] W. A. Strauss, “Nonlinear scattering at low energy”, J. Funct. Anal., 41 (1981), 110–133 | DOI | MR | Zbl

[39] Q. S. Zhang, “A blow-up result for a nonlinear wave equation with damping; The critical case”, C. R. Acad. Sci. Paris, Série I, 333 (2001), 109–114 | MR | Zbl

[40] E. Zuazua, “Weakly non-linear large time behavior for scalar convection-diffusion equations”, Diff. Int. Eqs., 6:5 (1993), 1481–1492 | MR

[41] E. Zuazua, “A dynamical system approach to the self-similar large time behavior in scalar convection-diffusion equations”, J. Diff. Eqs., 108 (1994), 1–35 | DOI | MR | Zbl