Normal families of space mappings
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 3 (2006), pp. 216-231.

Voir la notice de l'article provenant de la source Math-Net.Ru

Classes of the recently introduced so-called $Q$-homeomorphisms are studied. In the terms of the majorant $Q(x)$, a series of criteria of normality based on estimates of the distortion of the spherical distance under $Q$-homeomorphisms is given.
@article{SEMR_2006_3_a13,
     author = {V. I. Ryazanov and E. A. Sevost'yanov},
     title = {Normal families of space mappings},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {216--231},
     publisher = {mathdoc},
     volume = {3},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2006_3_a13/}
}
TY  - JOUR
AU  - V. I. Ryazanov
AU  - E. A. Sevost'yanov
TI  - Normal families of space mappings
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2006
SP  - 216
EP  - 231
VL  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2006_3_a13/
LA  - ru
ID  - SEMR_2006_3_a13
ER  - 
%0 Journal Article
%A V. I. Ryazanov
%A E. A. Sevost'yanov
%T Normal families of space mappings
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2006
%P 216-231
%V 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2006_3_a13/
%G ru
%F SEMR_2006_3_a13
V. I. Ryazanov; E. A. Sevost'yanov. Normal families of space mappings. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 3 (2006), pp. 216-231. http://geodesic.mathdoc.fr/item/SEMR_2006_3_a13/

[1] K. Astala, T. Iwaniec, P. Koskela and G. Martin, “Mappings of BMO-bounded distortion”, Math. Annalen, 317 (2000), 703–726 | DOI | MR | Zbl

[2] K. Astala, “A remark on quasiconformal mappings and BMO–functions”, Michigan Math. J., 30 (1983), 209–212 | DOI | MR | Zbl

[3] K. Astala and F. W. Gehring, “Injectivity, the BMO norm and the universal Teichmuller space”, J. Anal. Math., 46 (1986), 16–57 | DOI | MR | Zbl

[4] J. Dugundji, Topology, Allyn and Bacon, Inc., Boston, 1966 | MR | Zbl

[5] G. Federer, Geometricheskaya teoriya mery, Nauka, Moskva, 1987 | MR | Zbl

[6] B. Fuglede, “Extremal length and functional completion”, Acta Math., 98 (1957), 171–219 | DOI | MR | Zbl

[7] F. W. Gehring, “Quasiconformal mappings”, Complex Analysis and its Applications, v. 2, International Atomic Energy Agency, Vienna, 1976, 213–268 | MR | Zbl

[8] F. W. Gehring, “Characteristic Properities of Quasidisk”, Les prosses de l'Universite de Montreal, Montreal, 1982, 1–97 | MR

[9] F. W. Gehring and T. Iwaniec, “The limit of mappings with finite distortion”, Ann. Acad. Sci. Fenn. Math., 24 (1999), 253–264 | MR | Zbl

[10] J. Heinonen and P. Koskela, “Sobolev mappings with integrable dilatations”, Arch. Rational Mech. Anal., 125 (1993), 81–97 | DOI | MR | Zbl

[11] T. Iwaniec and G. Martin, Geometrical Function Theory and Non-linear Analysis, Clarendon Press, Oxford, 2001 | MR

[12] A. Ignat'ev and V. Ryazanov, Finite mean oscillation in the mapping theory, Preprint of Department of Mathematics, University of Helsinki, 2002.332, 2002, 17 pp. | MR

[13] A. Ignatev i V. Ryazanov, “K teorii ustranimykh osobennostei prostranstvennykh otobrazhenii”, Trudy IPMM NAN Ukrainy, 8, 2002, 25–38 | MR | Zbl

[14] A. Ignat'ev and V. Ryazanov, On the boundary behavior of space mappings, Preprint of Department of Mathematics, University of Helsinki, 2003.350, 2003, 11 pp. | MR

[15] A. Ignat'ev and V. Ryazanov, “Boundary behavior of $Q-$homeomorphisms”, Proc. Inst. Appl. Math. Mech. NASU, 9 (2004), 89–101 | MR

[16] A. Ignatev i V. Ryazanov, “Konechnoe srednee kolebanie v teorii otobrazhenii”, Ukr. matem. vestnik, 2:3 (2005), 395–417 | MR

[17] T. Iwaniec and V. Sverák, “On mappings with integrable dilatation”, Proc. Amer. Math. Soc., 118 (1993), 181–188 | MR | Zbl

[18] F. John, and L. Nirenberg, “On functions of bounded mean oscillation”, Comm. Pure Appl. Math., 14 (1961), 415–426 | DOI | MR | Zbl

[19] P. M. Jones, “Extension theorems for BMO”, Indiana Univ. Math. J., 29 (1980), 41–66 | MR | Zbl

[20] J. Kauhanen, P. Koskela and J. Maly, “Mappings of finite distortion: discreteness and openness”, Arch. Rational Mech. Anal., 160 (2001), 135–151 | DOI | MR | Zbl

[21] J. Kauhanen, P. Koskela and J. Maly, “Mappings of finite distortion: condition $N$”, Michigan Math. J., 49 (2001), 169–181 | DOI | MR | Zbl

[22] P. Koskela and J. Onninen, Mappings of finite distortion: capacity and modulus inequalities, Preprint Dept. Math. Stat., University of Jyväskylä, 257.2002, 2002, 32 pp. | MR

[23] K. Kuratovskii, Topologiya, v. 1, Mir, Moskva, 1966 | MR

[24] O. Lehto and K. Virtanen, Quasiconformal Mappings in the Plane, Springer, New York etc., 1973 | MR | Zbl

[25] V. Maz'ya, Sobolev classes, Springer, Berlin, New York, 1985

[26] O. Martio, V. Ryazanov, U. Srebro and E. Yakubov, BMO–quasiconformal mappings and $Q$-homeomorphisms in space, Preprint of Department of Mathematics, University of Helsinki, 2001.288, 2001, 24 pp. | MR

[27] O. Martio, V. Ryazanov, U. Srebro and E. Yakubov, “To the theory of $Q$-homeomorphisms”, Dokl. Akad. Nauk Rossii, 381:1 (2001), 20–22 | MR | Zbl

[28] O. Martio, V. Ryazanov, U. Srebro and E. Yakubov, On the boundary behavior of $Q$-homeomorphisms, Preprint of Department of Mathematics, University of Helsinki, 2002.318, 2002, 12 pp. | MR

[29] O. Martio, V. Ryazanov, U. Srebro and E. Yakubov, “Mappings with finite length distortion”, J. D. Anal. Math., 93 (2004), 215–236 | DOI | MR | Zbl

[30] O. Martio, V. Ryazanov and M. Vuorinen, “BMO and Injectivity of Space Quasiregular Mappings”, Math. Nachr., 205 (1999), 149–161 | DOI | MR | Zbl

[31] J. J. Manfredi and E. Villamor, “Mappings with integrable dilatation in higher dimensions”, Bull. Amer. Math. Soc., 32:2 (1995), 235–240 | DOI | MR | Zbl

[32] J. J. Manfredi and E. Villamor, “An extension of Reshetnyak's theorem”, Indiana Univ. Math. J., 47:3 (1998), 1131–1145 | MR | Zbl

[33] J. Maly and W. P. Ziemer, Fine Regularity of Solutions of Elliptic Partial Differential Equations, Math. Surveys and Monographs, 51, AMS, 1997 | MR | Zbl

[34] H. M. Reimann, “Functions of bounded mean oscillation and quasiconformal mappings”, Comment. Math. Helv., 49 (1974), 260–276 | DOI | MR | Zbl

[35] H. M. Reimann and T. Rychener, Funktionen Beschränkter Mittlerer Oscillation, Springer, Berlin etc., 1975 | MR | Zbl

[36] V. Ryazanov, U. Srebro and E. Yakubov, BMO–quasiconformal mappings, Preprint of Department of Mathematics, University of Helsinki, 1997.155, 1997, 22 pp. | MR

[37] V. Ryazanov, U. Srebro and E. Yakubov, “On the theory of BMO-quasiregular mappings”, Dokl. Akad. Nauk Rossii, 369:1 (1999), 13–15 | MR | Zbl

[38] V. Ryazanov, U. Srebro and E. Yakubov, “BMO-quasiconformal mappings”, J. d'Analyse Math., 83 (2001), 1–20 | DOI | MR | Zbl

[39] V. Ryazanov, U. Srebro and E. Yakubov, “Plane mappings with dilatation dominated by functions of bounded mean oscillation”, Sib. Adv. in Math., 11:2 (2001), 94–130 | MR | Zbl

[40] S. Saks, Theory of the Integral, Dover Publ. Inc., New York, 1964 | MR | Zbl

[41] J. Vaisala, Lectures on $n$–Dimensional Quasiconformal Mappings, Lecture Notes in Math., 229, Springer–Verlag, Berlin etc., 1971 | MR

[42] M. Vuorinen, Conformal Geometry and Quasiregular Mappings, Lecture Notes in Math., 1319, Springer–Verlag, Berlin etc., 1988 | MR | Zbl