Centraliser dimension and universal classes of groups
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 3 (2006), pp. 197-215.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we establish results that will be required for the study of the algebraic geometry of partially commutative groups. We define classes of groups axiomatized by sentences determined by a graph. Among the classes which arise this way we find $\mathrm{CSA}$ and $\mathrm{CT}$ groups. We study the centralisers of a group, with particular attention to the height of the lattice of centralisers, which we call the centraliser dimension of the group. The behaviour of centraliser dimension under several common group operations is described. Groups with centraliser dimension $2$ are studied in detail. It is shown that $\mathrm{CT}$-groups are precisely those with centraliser dimension $2$ and trivial centre.
@article{SEMR_2006_3_a12,
     author = {Andrew J. Duncan and Ilya V. Kazatchkov and Vladimir N. Remeslennikov},
     title = {Centraliser dimension and universal classes of groups},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {197--215},
     publisher = {mathdoc},
     volume = {3},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2006_3_a12/}
}
TY  - JOUR
AU  - Andrew J. Duncan
AU  - Ilya V. Kazatchkov
AU  - Vladimir N. Remeslennikov
TI  - Centraliser dimension and universal classes of groups
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2006
SP  - 197
EP  - 215
VL  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2006_3_a12/
LA  - en
ID  - SEMR_2006_3_a12
ER  - 
%0 Journal Article
%A Andrew J. Duncan
%A Ilya V. Kazatchkov
%A Vladimir N. Remeslennikov
%T Centraliser dimension and universal classes of groups
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2006
%P 197-215
%V 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2006_3_a12/
%G en
%F SEMR_2006_3_a12
Andrew J. Duncan; Ilya V. Kazatchkov; Vladimir N. Remeslennikov. Centraliser dimension and universal classes of groups. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 3 (2006), pp. 197-215. http://geodesic.mathdoc.fr/item/SEMR_2006_3_a12/

[1] S. I. Adian, The Burnside problem and identities in groups, Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], 95, Springer-Verlag, Berlin, New York, 1979, Translated from the Russian by John Lennox and James Wiegold | MR

[2] F. A. M. Aldosray and I. Stewart, “Lie algebras with the minimal condition on centralizer ideals”, Hiroshima Math. J., 19:2 (1989), 397–407 | MR | Zbl

[3] V. A. Antonov, Groups with restriction on centralisers, Part I, Chelyabinsk State Technical University, 1993, 147 pp.; Part II, 118 с. (in Russian)

[4] G. Baumslag, A. Myasnikov and V. Remeslennikov, “Algebraic geometry over groups”, J. Algebra, 219 (1999), 16–79 | DOI | MR | Zbl

[5] V. Blatherwick, Partially commutative, free nilpotent groups of class $2$, preprint | Zbl

[6] V. Bludov, “On locally nilpotent groups with the minimal condition on centralizers”, Groups St. Andrews 1997 in Bath, v. I, London Math. Soc. Lecture Note Ser., 260, Cambridge Univ. Press, Cambridge, 1999, 81–84 | MR | Zbl

[7] R. M. Bryant and B. Hartley, “Periodic locally soluble groups with the minimal condition on centralisers”, J. Algebra, 61 (1979), 326–334 | DOI | MR

[8] R. M. Bryant, “Groups with the minimal condition on centralisers”, J. Algebra, 60 (1979), 371–383 | DOI | MR | Zbl

[9] V. M. Busarkin and Yu. M. Gorchakov, Finite splitable groups, Nauka, M., 1968, 111 pp. (in Russian)

[10] C. C. Chang and H. J. Keisler, Model Theory, Studies in Logic and the Foundations of Mathematics, 73, North-Holland, 1990 | MR

[11] G. Duchamp and D. Krob, “Partially Commutative Magnus Transformations”, Internat. J. Algebra Comput., 3:1 (1993), 15–41 | DOI | MR | Zbl

[12] E. S. Esyp, I. V. Kazachkov and V. N. Remeslennikov, “Divisibility Theory and Complexity of Algorithms for Free Partially Commutative Groups”, Groups, Languages, Algorithms, Contemporary Mathematics, 378, Amer. Math. Soc., Providence, RI, 2005, 319–348 | MR | Zbl

[13] S. M. Gersten and H.B. Short, “Rational subgroups of biautomatic groups”, Ann. of Math. (2), 134:1 (1991), 125–158 | DOI | MR | Zbl

[14] E. Ghys and P. de la Harpe (eds.), Sur les groupes hyperboliques d'après Mikhael Gromov, Papers from the Swiss Seminar on Hyperbolic Groups held in Bern, Progress in Mathematics, 83, Birkhaüser Boston, Inc., Boston, MA, 1988

[15] S. V. Ivanov, and A. Yu. Ol'shanskii, “Hyperbolic groups and their quotients of bounded exponents”, Trans. Amer. Math. Soc., 348:6 (1996), 2091–2138 | DOI | MR | Zbl

[16] S. V. Ivanov, and A. Yu. Ol'shanskii, “On Finite and Locally Finite Subgroups of Free Burnside Groups of Large Even Exponents”, J. Algebra, 195 (1997), 241–248 | DOI | MR

[17] N. Ito, “On finite groups with given conjugate types. I”, Nagoya Math. J., 6 (1953), 17–28 | MR | Zbl

[18] O. H. Kegel and B. A. P. Wehrfritz, Locally finite groups, Amsterdam, London, 1973

[19] L. F. Kosvincev, “Finite groups with maximal centralizers of their elements”, Mat. Zametki, 13 (1973), 577–580 (Russian) | MR | Zbl

[20] A. G. Kuros, The Theory of Groups, v. II, Chelsea, New York, 1956

[21] J. C. Lennox and J. E. Roseblade, “Centrality in Finitely Generated Soluble Groups”, J. Algebra, 16 (1970), 399–435 | DOI | MR | Zbl

[22] W. Magnus, A. Karrass and D. Solitar, Combinatorial group theory, Wiley, New York, 1966

[23] L. Mosher, “Central quotients of biautomatic groups”, Comment. Math. Helv., 72:1 (1997), 16–29 | DOI | MR | Zbl

[24] A. Myasnikov and P. Shumyatsky, “Discriminating groups and $c$-dimension”, J. Group Theory, 7:1 (2004), 135–142 | DOI | MR

[25] A. Myasnikov and V. Remeslennikov, “Exponential groups II: Extension of centralizers and tensor completion of $CSA$-groups”, Intern.Journal of Algebra and Computation, 6 (1996), 687–711 | DOI | MR | Zbl

[26] A. Myasnikov and V. Remeslennikov, “Algebraic geometry over groups II. Logical foundations”, J. of Algebra, 234 (2000), 225–276 | DOI | MR | Zbl

[27] R. Schmidt, “Zentralisatorverbande endlicher Gruppen”, Rend. Dem. Math. Univ. Padova, 44 (1970), 97–131 | MR

[28] R. Schmidt, “Characterisierung der einfachen Gruppe der Ordnung 175560 duch ihren Zentralisatorverbande”, Math. Z., 116:4 (1970), 299–306 | DOI | MR | Zbl

[29] H. Servatius, “Automorphisms of graph groups”, J. Algebra, 126 (1989), 34–60 | DOI | MR | Zbl

[30] P. Vassiliou, “Eine Bemerkung über die von dem Zentralisator bestimmte Abbildung”, Prakt. Akad. Athēnōn, 42 (1967), 286–289 | MR | Zbl

[31] F. O. Wagner, “Nilpotency in groups with the minimal condition centralizers”, J. Algebra, 217:2 (1999), 448–460 | DOI | MR | Zbl

[32] B. A. F. Wehrfritz, “Remarks on centrality and cyclicity in linear groups”, J. Algebra, 18 (1971), 229–236 | DOI | MR | Zbl

[33] A. E. Zalesski, “Locally finite groups with the minimality condition for the centralisers”, Proceedings of Academy of Science of USSR, 3 (1965), 127–129 (in Russian) | MR | Zbl