Local rings of order $p^6$ with $4$-nilpotent radical of Jacobson
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 3 (2006), pp. 15-59.

Voir la notice de l'article provenant de la source Math-Net.Ru

The structure and classification up to isomorphism of all finite local rings of order $p^6$ with characteristics $p$ and $4$-nilpotent Jacobson radical are determined.
@article{SEMR_2006_3_a1,
     author = {E. V. Zhuravlev},
     title = {Local rings of order $p^6$ with $4$-nilpotent radical of {Jacobson}},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {15--59},
     publisher = {mathdoc},
     volume = {3},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2006_3_a1/}
}
TY  - JOUR
AU  - E. V. Zhuravlev
TI  - Local rings of order $p^6$ with $4$-nilpotent radical of Jacobson
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2006
SP  - 15
EP  - 59
VL  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2006_3_a1/
LA  - ru
ID  - SEMR_2006_3_a1
ER  - 
%0 Journal Article
%A E. V. Zhuravlev
%T Local rings of order $p^6$ with $4$-nilpotent radical of Jacobson
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2006
%P 15-59
%V 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2006_3_a1/
%G ru
%F SEMR_2006_3_a1
E. V. Zhuravlev. Local rings of order $p^6$ with $4$-nilpotent radical of Jacobson. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 3 (2006), pp. 15-59. http://geodesic.mathdoc.fr/item/SEMR_2006_3_a1/

[1] C. J. Chikunji, “On a Class of Finite Rings”, Communication in Algebra, 27:10 (1999), 5049–5081 | DOI | MR | Zbl

[2] C. J. Chikunji, Enumeration of Finite Rings with Jacobson Radical of Cube Zero [Electronic resource], Cornell University Library, 1999, Mode of access: math.RA/9905030

[3] C. J. Chikunji, Using Matlab to solve a classification problem in finite rings [Electronic resource] - $2^{nd}$ international conference on the teaching of mathematics, Greece, 2003, Mode of access: http://www.math.uoc.gr/~ctm2/Proceedings/pap252.pdf

[4] R. Raghavendran, “Finite associative rings”, Compositio Math., 21 (1969), 195–229 | MR | Zbl

[5] B. Corbas, “Finite rings in which the product of any two zero divisors is zero”, Archiv der Math., 21 (1970), 466–469 | DOI | MR | Zbl

[6] B. Corbas, “Rings with few zero divisors”, Math. Ann., 181 (1969), 1–7 | DOI | MR | Zbl

[7] B. Gorbas, G. D. Williams, “Rings of order $p^5$. Part 1. Nonlocal rings”, Journal of Algebra, 231 (2000), 677–690 | DOI | MR

[8] B. Gorbas, G. D. Williams, “Rings of order $p^5$. Part 2. Local rings”, Journal of Algebra, 231 (2000), 691–704 | DOI | MR

[9] B. Gorbas, G. D. Williams, “Gongruence of two-dimensional subspaces in $M_2(K)$ (characteristic $\neq 2$)”, Pacific Journal of Mathematics, 188:2 (1999), 225–235 | DOI | MR

[10] B. Gorbas, G. D. Williams, “Gongruence of two-dimensional subspaces in $M_2(K)$ (characteristic 2)”, Pacific Journal of Mathematics, 188:2 (1999), 237–249 | DOI | MR