Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2006_3_a1, author = {E. V. Zhuravlev}, title = {Local rings of order $p^6$ with $4$-nilpotent radical of {Jacobson}}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {15--59}, publisher = {mathdoc}, volume = {3}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2006_3_a1/} }
E. V. Zhuravlev. Local rings of order $p^6$ with $4$-nilpotent radical of Jacobson. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 3 (2006), pp. 15-59. http://geodesic.mathdoc.fr/item/SEMR_2006_3_a1/
[1] C. J. Chikunji, “On a Class of Finite Rings”, Communication in Algebra, 27:10 (1999), 5049–5081 | DOI | MR | Zbl
[2] C. J. Chikunji, Enumeration of Finite Rings with Jacobson Radical of Cube Zero [Electronic resource], Cornell University Library, 1999, Mode of access: math.RA/9905030
[3] C. J. Chikunji, Using Matlab to solve a classification problem in finite rings [Electronic resource] - $2^{nd}$ international conference on the teaching of mathematics, Greece, 2003, Mode of access: http://www.math.uoc.gr/~ctm2/Proceedings/pap252.pdf
[4] R. Raghavendran, “Finite associative rings”, Compositio Math., 21 (1969), 195–229 | MR | Zbl
[5] B. Corbas, “Finite rings in which the product of any two zero divisors is zero”, Archiv der Math., 21 (1970), 466–469 | DOI | MR | Zbl
[6] B. Corbas, “Rings with few zero divisors”, Math. Ann., 181 (1969), 1–7 | DOI | MR | Zbl
[7] B. Gorbas, G. D. Williams, “Rings of order $p^5$. Part 1. Nonlocal rings”, Journal of Algebra, 231 (2000), 677–690 | DOI | MR
[8] B. Gorbas, G. D. Williams, “Rings of order $p^5$. Part 2. Local rings”, Journal of Algebra, 231 (2000), 691–704 | DOI | MR
[9] B. Gorbas, G. D. Williams, “Gongruence of two-dimensional subspaces in $M_2(K)$ (characteristic $\neq 2$)”, Pacific Journal of Mathematics, 188:2 (1999), 225–235 | DOI | MR
[10] B. Gorbas, G. D. Williams, “Gongruence of two-dimensional subspaces in $M_2(K)$ (characteristic 2)”, Pacific Journal of Mathematics, 188:2 (1999), 237–249 | DOI | MR