Algebras of functions on mappings
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 2 (2005), pp. 102-140.

Voir la notice de l'article provenant de la source Math-Net.Ru

Topological algebras of functions on mappings are defined and investigated. It is proved that each algebra satisfying certain conditions (which are necessary and sufficient) is topologically (and isometrically with respect to its semi-norms) isomorphic to a subalgebra of an algebra of functions on some mapping. It is interesting to note that a completely regular space does not define a topology of its algebra of continuous functions uniquely if this space contains an infinite compact subspace, while a mapping do this, of course, amongst topologies of the definite kind. It is possible to define a new conception (connected with mappings) of a completeness of algebras and to prove some usual properties of complete algebras.
@article{SEMR_2005_2_a8,
     author = {V. M. Ulyanov},
     title = {Algebras of functions on mappings},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {102--140},
     publisher = {mathdoc},
     volume = {2},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2005_2_a8/}
}
TY  - JOUR
AU  - V. M. Ulyanov
TI  - Algebras of functions on mappings
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2005
SP  - 102
EP  - 140
VL  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2005_2_a8/
LA  - en
ID  - SEMR_2005_2_a8
ER  - 
%0 Journal Article
%A V. M. Ulyanov
%T Algebras of functions on mappings
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2005
%P 102-140
%V 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2005_2_a8/
%G en
%F SEMR_2005_2_a8
V. M. Ulyanov. Algebras of functions on mappings. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 2 (2005), pp. 102-140. http://geodesic.mathdoc.fr/item/SEMR_2005_2_a8/

[1] P. S. Aleksandrov, B. A. Pasynkov, Vvedenie v teoriyu razmernosti, Moskva, 1973

[2] R. Arens, “A generalization of normed rings”, Pacific J. of Math., 2 (1952), 455–471 | MR | Zbl

[3] N. Burbaki, Obschaya topologiya. Osnovnye struktury, Moskva, 1968 ; N. Bourbaki, Topologie générale. Chapitre 1. Structures topologiques. “Éléments de mathématique”, Paris, 1965; English translation: Paris, 1966 | MR

[4] Jacques Dixmier, Les $C^*$-algèbres et leurs représentations, Paris, 1969 | MR

[5] R. Engelking, Obschaya topologiya, Moskva, 1986 ; Ryszard Engelking, General topology, Warsaw, 1977 ; Berlin, 1989 | Zbl | MR

[6] K. Kuratowski, Topology, v. 1, Warsaw, New York, 1966 | MR

[7] A. Mallios, Topological algebras. Selected topics, North-Holland Math. Studies. Notas de Matemàtica, 124, Amsterdam, New York, Oxford, Tokyo, 1986 | MR | Zbl

[8] M. A. Naimark, Normirovannye koltsa, Moskva, 1968 | MR | Zbl

[9] B. A. Pasynkov, “O rasprostranenii na otobrazheniya nekotorykh ponyatii i utverzhdenii, kasayuschikhsya prostranstv”, Otobrazheniya i funktory, Moskva, 1984, 72–102 | MR | Zbl

[10] Sya Do-shin, “O polunormirovannykh koltsakh s involyutsiei”, Izvestiya AN SSSR, ser. matem., 23 (1959), 509–528 | MR

[11] V. M. Ul'janov, “On compactifications satisfying the first axiom of countability and absolutes”, Mathematical USSR Sbornik, 27:2, 199–226 | DOI | MR