A~note on codes and kets
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 2 (2005), pp. 79-82
Voir la notice de l'article provenant de la source Math-Net.Ru
To every binary linear $[n,k]$ code $C$ we associate a quantum state $|\Psi_C\rangle\in H^{\otimes n}$, where $H$ is the two-dimensional complex Hilbert space associated to the spin $\frac12$ particle. For the state $|\Psi_C\rangle$ we completely characterize all the expectation values of the products of spins measured,
for each one out of the $n$ particles, either in the $x$- or in the $y$-direction. This establishes an interesting relationship with the dual code $C^{\perp}$.
@article{SEMR_2005_2_a5,
author = {M. Caragiu},
title = {A~note on codes and kets},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {79--82},
publisher = {mathdoc},
volume = {2},
year = {2005},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2005_2_a5/}
}
M. Caragiu. A~note on codes and kets. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 2 (2005), pp. 79-82. http://geodesic.mathdoc.fr/item/SEMR_2005_2_a5/