A~note on codes and kets
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 2 (2005), pp. 79-82

Voir la notice de l'article provenant de la source Math-Net.Ru

To every binary linear $[n,k]$ code $C$ we associate a quantum state $|\Psi_C\rangle\in H^{\otimes n}$, where $H$ is the two-dimensional complex Hilbert space associated to the spin $\frac12$ particle. For the state $|\Psi_C\rangle$ we completely characterize all the expectation values of the products of spins measured, for each one out of the $n$ particles, either in the $x$- or in the $y$-direction. This establishes an interesting relationship with the dual code $C^{\perp}$.
@article{SEMR_2005_2_a5,
     author = {M. Caragiu},
     title = {A~note on codes and kets},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {79--82},
     publisher = {mathdoc},
     volume = {2},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2005_2_a5/}
}
TY  - JOUR
AU  - M. Caragiu
TI  - A~note on codes and kets
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2005
SP  - 79
EP  - 82
VL  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2005_2_a5/
LA  - en
ID  - SEMR_2005_2_a5
ER  - 
%0 Journal Article
%A M. Caragiu
%T A~note on codes and kets
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2005
%P 79-82
%V 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2005_2_a5/
%G en
%F SEMR_2005_2_a5
M. Caragiu. A~note on codes and kets. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 2 (2005), pp. 79-82. http://geodesic.mathdoc.fr/item/SEMR_2005_2_a5/