A note on codes and kets
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 2 (2005), pp. 79-82
Cet article a éte moissonné depuis la source Math-Net.Ru
To every binary linear $[n,k]$ code $C$ we associate a quantum state $|\Psi_C\rangle\in H^{\otimes n}$, where $H$ is the two-dimensional complex Hilbert space associated to the spin $\frac12$ particle. For the state $|\Psi_C\rangle$ we completely characterize all the expectation values of the products of spins measured, for each one out of the $n$ particles, either in the $x$- or in the $y$-direction. This establishes an interesting relationship with the dual code $C^{\perp}$.
@article{SEMR_2005_2_a5,
author = {M. Caragiu},
title = {A~note on codes and kets},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {79--82},
year = {2005},
volume = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2005_2_a5/}
}
M. Caragiu. A note on codes and kets. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 2 (2005), pp. 79-82. http://geodesic.mathdoc.fr/item/SEMR_2005_2_a5/
[1] D. M. Greenberger, M. Horne and A. Zeilinger, Bell's Theorem, Quantum Theory and Conceptions of the Universe, ed. M. Kafatos, Kluwer Academic, Dordrecht, 1989
[2] D. M. Greenberger, M. A. Horne, A. Shimony and A. Zeilinger, “Bell's theorem without inequalities”, Amer. J. Phys., 58 (1990), 1131–1143 | DOI | MR | Zbl
[3] J. H. van Lint, Introduction to Coding Theory, Third Edition, Springer Verlag, 1999 | MR
[4] C. Cohen-Tannoudji, B. Diu and F. Laloe, Quantum Mechanics, v. I, Wiley-Interscience, 1996