$\aleph_0$-spaces and images of separable metric spaces
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 2 (2005), pp. 62-67
Voir la notice de l'article provenant de la source Math-Net.Ru
A space $X$ is an $\aleph_0$-space if and only if $X$ is a sequencecovering and compact-covering image of a separable metric space. It follows that a space $X$ is a $k$-and-$\aleph_0$-space if and only if $X$ is a sequencecovering and compact-covering, quotient image of a separable metric space.
@article{SEMR_2005_2_a3,
author = {Y. Ge},
title = {$\aleph_0$-spaces and images of separable metric spaces},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {62--67},
publisher = {mathdoc},
volume = {2},
year = {2005},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2005_2_a3/}
}
Y. Ge. $\aleph_0$-spaces and images of separable metric spaces. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 2 (2005), pp. 62-67. http://geodesic.mathdoc.fr/item/SEMR_2005_2_a3/