$\aleph_0$-spaces and images of separable metric spaces
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 2 (2005), pp. 62-67

Voir la notice de l'article provenant de la source Math-Net.Ru

A space $X$ is an $\aleph_0$-space if and only if $X$ is a sequencecovering and compact-covering image of a separable metric space. It follows that a space $X$ is a $k$-and-$\aleph_0$-space if and only if $X$ is a sequencecovering and compact-covering, quotient image of a separable metric space.
@article{SEMR_2005_2_a3,
     author = {Y. Ge},
     title = {$\aleph_0$-spaces and images of separable metric spaces},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {62--67},
     publisher = {mathdoc},
     volume = {2},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2005_2_a3/}
}
TY  - JOUR
AU  - Y. Ge
TI  - $\aleph_0$-spaces and images of separable metric spaces
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2005
SP  - 62
EP  - 67
VL  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2005_2_a3/
LA  - en
ID  - SEMR_2005_2_a3
ER  - 
%0 Journal Article
%A Y. Ge
%T $\aleph_0$-spaces and images of separable metric spaces
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2005
%P 62-67
%V 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2005_2_a3/
%G en
%F SEMR_2005_2_a3
Y. Ge. $\aleph_0$-spaces and images of separable metric spaces. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 2 (2005), pp. 62-67. http://geodesic.mathdoc.fr/item/SEMR_2005_2_a3/