Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2005_2_a28, author = {A. T. Gainov}, title = {The orthogonal automorphism groups $\operatorname{Ortaut}A$ for $\mathbb Z_3$-orthograded quasimonocomposition algebras~$A$ of dimension~$9$ satisfying the conditions $\dim A_0=1$, $A_1A_2=0$}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {200--203}, publisher = {mathdoc}, volume = {2}, year = {2005}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2005_2_a28/} }
TY - JOUR AU - A. T. Gainov TI - The orthogonal automorphism groups $\operatorname{Ortaut}A$ for $\mathbb Z_3$-orthograded quasimonocomposition algebras~$A$ of dimension~$9$ satisfying the conditions $\dim A_0=1$, $A_1A_2=0$ JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2005 SP - 200 EP - 203 VL - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2005_2_a28/ LA - ru ID - SEMR_2005_2_a28 ER -
%0 Journal Article %A A. T. Gainov %T The orthogonal automorphism groups $\operatorname{Ortaut}A$ for $\mathbb Z_3$-orthograded quasimonocomposition algebras~$A$ of dimension~$9$ satisfying the conditions $\dim A_0=1$, $A_1A_2=0$ %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2005 %P 200-203 %V 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2005_2_a28/ %G ru %F SEMR_2005_2_a28
A. T. Gainov. The orthogonal automorphism groups $\operatorname{Ortaut}A$ for $\mathbb Z_3$-orthograded quasimonocomposition algebras~$A$ of dimension~$9$ satisfying the conditions $\dim A_0=1$, $A_1A_2=0$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 2 (2005), pp. 200-203. http://geodesic.mathdoc.fr/item/SEMR_2005_2_a28/
[1] A. T. Gainov, “$\mathbb Z_3$-Ortograduirovannye kvazimonokompozitsionnye algebry s odnomernoi nul-komponentoi”, Sibirskie elektronnye matematicheskie izvestiya, 2 (2005), 141–144 http://semr.math.nsc.ru | MR