The orthogonal automorphism groups $\operatorname{Ortaut}A$ for $\mathbb Z_3$-orthograded quasimonocomposition algebras~$A$ of dimension~$9$ satisfying the conditions $\dim A_0=1$, $A_1A_2=0$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 2 (2005), pp. 200-203
Voir la notice de l'article provenant de la source Math-Net.Ru
In [1], the author has found all orthogonal non-isomorphic $\mathbb Z_3$-orthograded quasimonocomposition algebras $A=A_0\oplus A_1\oplus A_2$ satisfying the conditions $\dim A=9$, $\dim A_0=1$, and $A_1A_2=0$. In this paper we construct their orthogonal automorphisms groups.
@article{SEMR_2005_2_a28,
author = {A. T. Gainov},
title = {The orthogonal automorphism groups $\operatorname{Ortaut}A$ for $\mathbb Z_3$-orthograded quasimonocomposition algebras~$A$ of dimension~$9$ satisfying the conditions $\dim A_0=1$, $A_1A_2=0$},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {200--203},
publisher = {mathdoc},
volume = {2},
year = {2005},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2005_2_a28/}
}
TY - JOUR
AU - A. T. Gainov
TI - The orthogonal automorphism groups $\operatorname{Ortaut}A$ for $\mathbb Z_3$-orthograded quasimonocomposition algebras~$A$ of dimension~$9$ satisfying the conditions $\dim A_0=1$, $A_1A_2=0$
JO - Sibirskie èlektronnye matematičeskie izvestiâ
PY - 2005
SP - 200
EP - 203
VL - 2
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/SEMR_2005_2_a28/
LA - ru
ID - SEMR_2005_2_a28
ER -
%0 Journal Article
%A A. T. Gainov
%T The orthogonal automorphism groups $\operatorname{Ortaut}A$ for $\mathbb Z_3$-orthograded quasimonocomposition algebras~$A$ of dimension~$9$ satisfying the conditions $\dim A_0=1$, $A_1A_2=0$
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2005
%P 200-203
%V 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2005_2_a28/
%G ru
%F SEMR_2005_2_a28
A. T. Gainov. The orthogonal automorphism groups $\operatorname{Ortaut}A$ for $\mathbb Z_3$-orthograded quasimonocomposition algebras~$A$ of dimension~$9$ satisfying the conditions $\dim A_0=1$, $A_1A_2=0$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 2 (2005), pp. 200-203. http://geodesic.mathdoc.fr/item/SEMR_2005_2_a28/