The orthogonal automorphism groups $\operatorname{Ortaut}A$ for $\mathbb Z_3$-orthograded quasimonocomposition algebras~$A$ of dimension~$9$ satisfying the conditions $\dim A_0=1$, $A_1A_2=0$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 2 (2005), pp. 200-203.

Voir la notice de l'article provenant de la source Math-Net.Ru

In [1], the author has found all orthogonal non-isomorphic $\mathbb Z_3$-orthograded quasimonocomposition algebras $A=A_0\oplus A_1\oplus A_2$ satisfying the conditions $\dim A=9$, $\dim A_0=1$, and $A_1A_2=0$. In this paper we construct their orthogonal automorphisms groups.
@article{SEMR_2005_2_a28,
     author = {A. T. Gainov},
     title = {The orthogonal automorphism groups $\operatorname{Ortaut}A$ for $\mathbb Z_3$-orthograded quasimonocomposition algebras~$A$ of dimension~$9$ satisfying the conditions $\dim A_0=1$, $A_1A_2=0$},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {200--203},
     publisher = {mathdoc},
     volume = {2},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2005_2_a28/}
}
TY  - JOUR
AU  - A. T. Gainov
TI  - The orthogonal automorphism groups $\operatorname{Ortaut}A$ for $\mathbb Z_3$-orthograded quasimonocomposition algebras~$A$ of dimension~$9$ satisfying the conditions $\dim A_0=1$, $A_1A_2=0$
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2005
SP  - 200
EP  - 203
VL  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2005_2_a28/
LA  - ru
ID  - SEMR_2005_2_a28
ER  - 
%0 Journal Article
%A A. T. Gainov
%T The orthogonal automorphism groups $\operatorname{Ortaut}A$ for $\mathbb Z_3$-orthograded quasimonocomposition algebras~$A$ of dimension~$9$ satisfying the conditions $\dim A_0=1$, $A_1A_2=0$
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2005
%P 200-203
%V 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2005_2_a28/
%G ru
%F SEMR_2005_2_a28
A. T. Gainov. The orthogonal automorphism groups $\operatorname{Ortaut}A$ for $\mathbb Z_3$-orthograded quasimonocomposition algebras~$A$ of dimension~$9$ satisfying the conditions $\dim A_0=1$, $A_1A_2=0$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 2 (2005), pp. 200-203. http://geodesic.mathdoc.fr/item/SEMR_2005_2_a28/

[1] A. T. Gainov, “$\mathbb Z_3$-Ortograduirovannye kvazimonokompozitsionnye algebry s odnomernoi nul-komponentoi”, Sibirskie elektronnye matematicheskie izvestiya, 2 (2005), 141–144 http://semr.math.nsc.ru | MR