$\mathbb Z_3$-orthograded quasimonocomposition algebras with one-dimensional null component
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 2 (2005), pp. 141-144

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider $\mathbb Z_3$-orthograded nondegenerate quasimonocomposition algebras $A=A_0\oplus A_1\oplus A_2$ such that $\dim A_0=1$ and $A_1A_2=0$. It is proved that all algebras in this class $W$ are solvable of solvability index either two or three. All non bi-isotropic orthogonal nonisomorphic algebras $A$ of $W$ of least dimension, which is equal to $9$, are classified. An infinite series of algebras $C_r$ in $W$ of dimension $\dim C_r=8r+1$ is constructed for every $r\in\mathbb N=\{1,2,\dots\}$. All algebras $C_r$ are solvable of solvability index $3$ and nilpotent of nil-index $5$.
@article{SEMR_2005_2_a22,
     author = {A. T. Gainov},
     title = {$\mathbb Z_3$-orthograded quasimonocomposition algebras with one-dimensional null component},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {141--144},
     publisher = {mathdoc},
     volume = {2},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2005_2_a22/}
}
TY  - JOUR
AU  - A. T. Gainov
TI  - $\mathbb Z_3$-orthograded quasimonocomposition algebras with one-dimensional null component
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2005
SP  - 141
EP  - 144
VL  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2005_2_a22/
LA  - ru
ID  - SEMR_2005_2_a22
ER  - 
%0 Journal Article
%A A. T. Gainov
%T $\mathbb Z_3$-orthograded quasimonocomposition algebras with one-dimensional null component
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2005
%P 141-144
%V 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2005_2_a22/
%G ru
%F SEMR_2005_2_a22
A. T. Gainov. $\mathbb Z_3$-orthograded quasimonocomposition algebras with one-dimensional null component. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 2 (2005), pp. 141-144. http://geodesic.mathdoc.fr/item/SEMR_2005_2_a22/