On recognition of the projective special linear groups over binary fields
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 2 (2005), pp. 253-263

Voir la notice de l'article provenant de la source Math-Net.Ru

The spectrum $\omega(G)$ of a finite group $G$ is the set of element orders of $G$. Let $L$ be the projective special linear group $L_n(2)$ with $n\ge3$. First, for all $n\ge3$ we establish that every finite group $G$ with $\omega(G)=\omega(L)$ has a unique non-abelian composition factor and this factor is isomorphic to $L$. Second, for some special series of integers $n$ we prove that $L$ is recognizable by spectrum, i. e. every finite group $G$ with $\omega(G)=\omega(L)$ is isomorphic to $L$.
@article{SEMR_2005_2_a18,
     author = {M. A. Grechkoseeva and M. S. Lucido and V. D. Mazurov and A. R. Moghaddamfar and A. V. Vasil'ev},
     title = {On recognition of the projective special linear groups over binary fields},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {253--263},
     publisher = {mathdoc},
     volume = {2},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2005_2_a18/}
}
TY  - JOUR
AU  - M. A. Grechkoseeva
AU  - M. S. Lucido
AU  - V. D. Mazurov
AU  - A. R. Moghaddamfar
AU  - A. V. Vasil'ev
TI  - On recognition of the projective special linear groups over binary fields
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2005
SP  - 253
EP  - 263
VL  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2005_2_a18/
LA  - en
ID  - SEMR_2005_2_a18
ER  - 
%0 Journal Article
%A M. A. Grechkoseeva
%A M. S. Lucido
%A V. D. Mazurov
%A A. R. Moghaddamfar
%A A. V. Vasil'ev
%T On recognition of the projective special linear groups over binary fields
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2005
%P 253-263
%V 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2005_2_a18/
%G en
%F SEMR_2005_2_a18
M. A. Grechkoseeva; M. S. Lucido; V. D. Mazurov; A. R. Moghaddamfar; A. V. Vasil'ev. On recognition of the projective special linear groups over binary fields. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 2 (2005), pp. 253-263. http://geodesic.mathdoc.fr/item/SEMR_2005_2_a18/