On recognition of the projective special linear groups over binary fields
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 2 (2005), pp. 253-263
Voir la notice de l'article provenant de la source Math-Net.Ru
The spectrum $\omega(G)$ of a finite group $G$ is the set of element orders of $G$. Let $L$ be the projective special linear group $L_n(2)$ with $n\ge3$. First, for all $n\ge3$ we establish that every finite group $G$ with $\omega(G)=\omega(L)$ has a unique non-abelian composition factor and this factor is isomorphic to $L$. Second, for some special series of integers $n$ we prove that $L$ is recognizable by spectrum, i. e. every finite group $G$ with $\omega(G)=\omega(L)$ is isomorphic to $L$.
@article{SEMR_2005_2_a18,
author = {M. A. Grechkoseeva and M. S. Lucido and V. D. Mazurov and A. R. Moghaddamfar and A. V. Vasil'ev},
title = {On recognition of the projective special linear groups over binary fields},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {253--263},
publisher = {mathdoc},
volume = {2},
year = {2005},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2005_2_a18/}
}
TY - JOUR AU - M. A. Grechkoseeva AU - M. S. Lucido AU - V. D. Mazurov AU - A. R. Moghaddamfar AU - A. V. Vasil'ev TI - On recognition of the projective special linear groups over binary fields JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2005 SP - 253 EP - 263 VL - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2005_2_a18/ LA - en ID - SEMR_2005_2_a18 ER -
%0 Journal Article %A M. A. Grechkoseeva %A M. S. Lucido %A V. D. Mazurov %A A. R. Moghaddamfar %A A. V. Vasil'ev %T On recognition of the projective special linear groups over binary fields %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2005 %P 253-263 %V 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2005_2_a18/ %G en %F SEMR_2005_2_a18
M. A. Grechkoseeva; M. S. Lucido; V. D. Mazurov; A. R. Moghaddamfar; A. V. Vasil'ev. On recognition of the projective special linear groups over binary fields. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 2 (2005), pp. 253-263. http://geodesic.mathdoc.fr/item/SEMR_2005_2_a18/