On recognition of the projective special linear groups over binary fields
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 2 (2005), pp. 253-263.

Voir la notice de l'article provenant de la source Math-Net.Ru

The spectrum $\omega(G)$ of a finite group $G$ is the set of element orders of $G$. Let $L$ be the projective special linear group $L_n(2)$ with $n\ge3$. First, for all $n\ge3$ we establish that every finite group $G$ with $\omega(G)=\omega(L)$ has a unique non-abelian composition factor and this factor is isomorphic to $L$. Second, for some special series of integers $n$ we prove that $L$ is recognizable by spectrum, i. e. every finite group $G$ with $\omega(G)=\omega(L)$ is isomorphic to $L$.
@article{SEMR_2005_2_a18,
     author = {M. A. Grechkoseeva and M. S. Lucido and V. D. Mazurov and A. R. Moghaddamfar and A. V. Vasil'ev},
     title = {On recognition of the projective special linear groups over binary fields},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {253--263},
     publisher = {mathdoc},
     volume = {2},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2005_2_a18/}
}
TY  - JOUR
AU  - M. A. Grechkoseeva
AU  - M. S. Lucido
AU  - V. D. Mazurov
AU  - A. R. Moghaddamfar
AU  - A. V. Vasil'ev
TI  - On recognition of the projective special linear groups over binary fields
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2005
SP  - 253
EP  - 263
VL  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2005_2_a18/
LA  - en
ID  - SEMR_2005_2_a18
ER  - 
%0 Journal Article
%A M. A. Grechkoseeva
%A M. S. Lucido
%A V. D. Mazurov
%A A. R. Moghaddamfar
%A A. V. Vasil'ev
%T On recognition of the projective special linear groups over binary fields
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2005
%P 253-263
%V 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2005_2_a18/
%G en
%F SEMR_2005_2_a18
M. A. Grechkoseeva; M. S. Lucido; V. D. Mazurov; A. R. Moghaddamfar; A. V. Vasil'ev. On recognition of the projective special linear groups over binary fields. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 2 (2005), pp. 253-263. http://geodesic.mathdoc.fr/item/SEMR_2005_2_a18/

[1] M. R. Aleeva, “On finite simple groups with the set of element orders as in a Frobenius group or a double Frobenius group”, Math. Notes, 73 (2003), 299–313 | DOI | MR | Zbl

[2] R. W. Carter, “Centralizers of semisimple elements in the finite classical group”, Proceedings of London Mathemetical Society (3), 42 (1981), 1–41 | DOI | MR | Zbl

[3] R. W. Carter, Simple groups of Lie type, John Wiley Sons, London, 1972 | MR | Zbl

[4] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson, Atlas of Finite Groups, Clarendon Press, Oxford, 1985 | MR | Zbl

[5] M. R. Darafsheh and A. R. Moghaddamfar, “Characterization of the groups $PSL_5(2)$, $PSL_6(2)$ and $PSL_7(2)$”, Comm. in Algebra, 29 (2001), 465–475 ; Corrigendum to: “Characterization of the groups $PSL_5(2)$, $PSL_6(2)$ and $PSL_7(2)$”, Comm. in Algebra, 32 (2003), 4651–4653 | DOI | MR | Zbl | MR

[6] M. R. Darafsheh and A. R. Moghaddamfar, “A characterization of groups related to the linear groups $PSL(n,2)$, $n=5,6,7,8$”, Pure Mathematics and Application, 11 (2000), 629–637 | MR

[7] M. A. Grechkoseeva and A. V. Vasil'ev, “On recognition by spectrum of finite simple linear groups over fields of characteristic 2”, Sib. Math. J., 46 (2005), 593–600 | DOI | MR | Zbl

[8] M. A. Grechkoseeva, W. J. Shi and A. V. Vasil'ev, “Recognition by spectrum of $L_{16}(2m)$”, Algebra Colloquium (to appear)

[9] The GAP Group, GAP – Groups, Algorithms, and Programming, Version 4.4, 2004, http://www.gap-system.org

[10] C. Jansen, K. Lux, R. A. Parker and R. A. Wilson, An atlas of Brauer characters, Clarendon Press, Oxford, 1995 | MR | Zbl

[11] A. S. Kondratév, “On prime graph components of finite simple groups”, Math. USSR Sbornik, 180 (1989), 787–797 | MR

[12] M. S. Lucido and A. R. Moghaddamfar, “Groups with complete prime graph connected components”, J. Group Theory, 7 (2004), 373–384 | DOI | MR | Zbl

[13] M. S. Lucido and A. R. Moghaddamfar, “Recognition of some linear groups over the binary field through their spectrum”, Siberian Math. J., 46 (2005) (to appear)

[14] V. D. Mazurov, “Characterizations of finite groups by sets of element orders”, Algebra and Logic, 36 (1997), 23–32 | DOI | MR | Zbl

[15] V. D. Mazurov, “Recognition of finite simple groups $S_4(q)$ by their element orders”, Algebra and Logic, 41 (2002), 93–110 | DOI | MR | Zbl

[16] V. D. Mazurov, “Characterization of groups by arithmetic properties”, Algebra Colloquium, 11 (2004), 129–140 | MR | Zbl

[17] A. R. Moghaddamfar, “On spectrum of linear groups over the binary field and recognizability of $L_{12}(2)$”, International Journal of Algebra and Computation (to appear)

[18] A. R. Moghaddamfar, A. R. Zokayi and M. Khademi, “A characterization of the finite simple group $L_{11}(2)$ by its element orders”, Taiwanese J. Math., 9 (2005), 445–455 | MR | Zbl

[19] W. J. Shi, “A characteristic property of $PSL_2(7)$”, J. Austral Math. Soc., Ser. A., 36 (1984), 354–356 | DOI | MR | Zbl

[20] W. J. Shi, “A characteristic property of $A_8$”, Acta Math. Sin. New Ser., 3 (1987), 92–96 | DOI | MR | Zbl

[21] A. V. Vasil'ev, “On connection between the structure of finite group and properties of its prime graph”, Sib. Math. J., 46 (2005), 396–404 | DOI | MR

[22] A. V. Vasil'ev and E. P. Vdovin, “An adjacency criterion for two vertices of the prime graph of a finite simple group”, Algebra and Logic (to appear)

[23] J. S. Williams, “Prime graph components of finite groups”, J. of Algebra, 69 (1981), 487–513 | DOI | MR | Zbl

[24] K. Zsigmondy, “Zur Theorie der Potenzreste”, Monatsh. Math. Phys., 3 (1892), 265–284 | DOI | MR