Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2005_2_a17, author = {O. V. Borodin and A. O. Ivanova}, title = {An oriented colouring of planar graphs with girth at least~$4$}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {239--249}, publisher = {mathdoc}, volume = {2}, year = {2005}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2005_2_a17/} }
TY - JOUR AU - O. V. Borodin AU - A. O. Ivanova TI - An oriented colouring of planar graphs with girth at least~$4$ JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2005 SP - 239 EP - 249 VL - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2005_2_a17/ LA - ru ID - SEMR_2005_2_a17 ER -
O. V. Borodin; A. O. Ivanova. An oriented colouring of planar graphs with girth at least~$4$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 2 (2005), pp. 239-249. http://geodesic.mathdoc.fr/item/SEMR_2005_2_a17/
[1] O. V. Borodin, “On acyclic colorings of planar graphs”, Discrete Math., 25 (1979), 211–236 | DOI | MR | Zbl
[2] O. V. Borodin, A. V. Kostochka, J. Nešetřil, A. Raspaud, and E. Sopena, “On the maximum average degree and the oriented chromatic number of a graph”, Discrete Mathematics, 206 (1999), 77–90 | DOI | MR
[3] O. V. Borodin, S.-J. Kim, A. V. Kostochka, and D. B. West, “Homomorphisms from sparse graphs with large girth”, Journal of Combinatorial Theory, Series B, 90 (2004), 147–159 | DOI | MR | Zbl
[4] O. V. Borodin, A. O. Ivanova, A. V. Kostochka, Orientirovannaya 5-raskraska razrezhennykh grafov (to appear)
[5] B. Courselle, “The monadic second order logic of graphs VI: On several representations of graphs by relational structures”, Discrete Appl. Math., 54 (1994), 117–149 | DOI | MR
[6] J. Nešetřil, A. Raspaud, and E. Sopena, “Colorings and girth of oriented planar graphs”, Discrete Math., 165–166:1–3 (1997), 519–530 | MR | Zbl
[7] P. Ochem, “Oriented colorings of triangle-free planar graphs”, Inf. Process. Lett., 92:2 (2004), 71–76 | DOI | MR | Zbl
[8] A. Raspaud and E. Sopena, “Good and semi-strong colorings of oriented planar graphs”, Inf. Processing Letters, 51 (1994), 171–174 | DOI | MR | Zbl