An oriented colouring of planar graphs with girth at least~$4$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 2 (2005), pp. 239-249

Voir la notice de l'article provenant de la source Math-Net.Ru

An oriented $k$-colouring of an oriented graph $H$ is a homomorphism of $H$ into a tournament on $k$ vertices. In the paper we prove that any orientation of a planar graph without triangle has an oriented $47$-colouring, which improves the best known upper bound $59$.
@article{SEMR_2005_2_a17,
     author = {O. V. Borodin and A. O. Ivanova},
     title = {An oriented colouring of planar graphs with girth at least~$4$},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {239--249},
     publisher = {mathdoc},
     volume = {2},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2005_2_a17/}
}
TY  - JOUR
AU  - O. V. Borodin
AU  - A. O. Ivanova
TI  - An oriented colouring of planar graphs with girth at least~$4$
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2005
SP  - 239
EP  - 249
VL  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2005_2_a17/
LA  - ru
ID  - SEMR_2005_2_a17
ER  - 
%0 Journal Article
%A O. V. Borodin
%A A. O. Ivanova
%T An oriented colouring of planar graphs with girth at least~$4$
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2005
%P 239-249
%V 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2005_2_a17/
%G ru
%F SEMR_2005_2_a17
O. V. Borodin; A. O. Ivanova. An oriented colouring of planar graphs with girth at least~$4$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 2 (2005), pp. 239-249. http://geodesic.mathdoc.fr/item/SEMR_2005_2_a17/