An oriented colouring of planar graphs with girth at least~$4$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 2 (2005), pp. 239-249.

Voir la notice de l'article provenant de la source Math-Net.Ru

An oriented $k$-colouring of an oriented graph $H$ is a homomorphism of $H$ into a tournament on $k$ vertices. In the paper we prove that any orientation of a planar graph without triangle has an oriented $47$-colouring, which improves the best known upper bound $59$.
@article{SEMR_2005_2_a17,
     author = {O. V. Borodin and A. O. Ivanova},
     title = {An oriented colouring of planar graphs with girth at least~$4$},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {239--249},
     publisher = {mathdoc},
     volume = {2},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2005_2_a17/}
}
TY  - JOUR
AU  - O. V. Borodin
AU  - A. O. Ivanova
TI  - An oriented colouring of planar graphs with girth at least~$4$
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2005
SP  - 239
EP  - 249
VL  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2005_2_a17/
LA  - ru
ID  - SEMR_2005_2_a17
ER  - 
%0 Journal Article
%A O. V. Borodin
%A A. O. Ivanova
%T An oriented colouring of planar graphs with girth at least~$4$
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2005
%P 239-249
%V 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2005_2_a17/
%G ru
%F SEMR_2005_2_a17
O. V. Borodin; A. O. Ivanova. An oriented colouring of planar graphs with girth at least~$4$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 2 (2005), pp. 239-249. http://geodesic.mathdoc.fr/item/SEMR_2005_2_a17/

[1] O. V. Borodin, “On acyclic colorings of planar graphs”, Discrete Math., 25 (1979), 211–236 | DOI | MR | Zbl

[2] O. V. Borodin, A. V. Kostochka, J. Nešetřil, A. Raspaud, and E. Sopena, “On the maximum average degree and the oriented chromatic number of a graph”, Discrete Mathematics, 206 (1999), 77–90 | DOI | MR

[3] O. V. Borodin, S.-J. Kim, A. V. Kostochka, and D. B. West, “Homomorphisms from sparse graphs with large girth”, Journal of Combinatorial Theory, Series B, 90 (2004), 147–159 | DOI | MR | Zbl

[4] O. V. Borodin, A. O. Ivanova, A. V. Kostochka, Orientirovannaya 5-raskraska razrezhennykh grafov (to appear)

[5] B. Courselle, “The monadic second order logic of graphs VI: On several representations of graphs by relational structures”, Discrete Appl. Math., 54 (1994), 117–149 | DOI | MR

[6] J. Nešetřil, A. Raspaud, and E. Sopena, “Colorings and girth of oriented planar graphs”, Discrete Math., 165–166:1–3 (1997), 519–530 | MR | Zbl

[7] P. Ochem, “Oriented colorings of triangle-free planar graphs”, Inf. Process. Lett., 92:2 (2004), 71–76 | DOI | MR | Zbl

[8] A. Raspaud and E. Sopena, “Good and semi-strong colorings of oriented planar graphs”, Inf. Processing Letters, 51 (1994), 171–174 | DOI | MR | Zbl