An oriented $7$-colouring of planar graphs with girth at least~$7$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 2 (2005), pp. 222-229

Voir la notice de l'article provenant de la source Math-Net.Ru

An oriented $k$-colouring of digraph $H$ is an oriented homomorphism of $H$ into a $k$-vertex tournament. We prove that every orientation of a plane graph with girth at least $7$ has an oriented $7$-colouring.
@article{SEMR_2005_2_a14,
     author = {O. V. Borodin and A. O. Ivanova},
     title = {An oriented $7$-colouring of planar graphs with girth at least~$7$},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {222--229},
     publisher = {mathdoc},
     volume = {2},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2005_2_a14/}
}
TY  - JOUR
AU  - O. V. Borodin
AU  - A. O. Ivanova
TI  - An oriented $7$-colouring of planar graphs with girth at least~$7$
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2005
SP  - 222
EP  - 229
VL  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2005_2_a14/
LA  - ru
ID  - SEMR_2005_2_a14
ER  - 
%0 Journal Article
%A O. V. Borodin
%A A. O. Ivanova
%T An oriented $7$-colouring of planar graphs with girth at least~$7$
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2005
%P 222-229
%V 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2005_2_a14/
%G ru
%F SEMR_2005_2_a14
O. V. Borodin; A. O. Ivanova. An oriented $7$-colouring of planar graphs with girth at least~$7$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 2 (2005), pp. 222-229. http://geodesic.mathdoc.fr/item/SEMR_2005_2_a14/