Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2005_2_a14, author = {O. V. Borodin and A. O. Ivanova}, title = {An oriented $7$-colouring of planar graphs with girth at least~$7$}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {222--229}, publisher = {mathdoc}, volume = {2}, year = {2005}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2005_2_a14/} }
TY - JOUR AU - O. V. Borodin AU - A. O. Ivanova TI - An oriented $7$-colouring of planar graphs with girth at least~$7$ JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2005 SP - 222 EP - 229 VL - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2005_2_a14/ LA - ru ID - SEMR_2005_2_a14 ER -
O. V. Borodin; A. O. Ivanova. An oriented $7$-colouring of planar graphs with girth at least~$7$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 2 (2005), pp. 222-229. http://geodesic.mathdoc.fr/item/SEMR_2005_2_a14/
[1] O. V. Borodin, “On acyclic colorings of planar graphs”, Discrete Math., 25 (1979), 211–236 | DOI | MR | Zbl
[2] O. V. Borodin, A. O. Ivanova, Orientirovannaya raskraska ploskikh grafov s obkhvatom ne menee 4 (to appear)
[3] O. V. Borodin, A. O. Ivanova, A. V. Kostochka, Orientirovannaya 5-raskraska razrezhennykh grafov (to appear)
[4] O. V. Borodin, A. V. Kostochka, J. Nešetřil, A. Raspaud and E. Sopena, “On universal graphs for planar oriented graphs of a given girth”, Discrete Mathematics, 188 (1998), 73–85 | DOI | MR | Zbl
[5] O. V. Borodin, A. V. Kostochka, J. Nešetřil, A. Raspaud and E. Sopena, “On the maximum average degree and the oriented chromatic number of a graph”, Discrete Mathematics, 206 (1999), 77–90 | DOI | MR
[6] O. V. Borodin, S.-J. Kim, A. V. Kostochka, and D. B. West, “Homomorphisms from sparse graphs with large girth”, Journal of Combinatorial Theory, Series B, 90 (2004), 147–159 | DOI | MR | Zbl
[7] B. Courselle, “The monadic second order logic of graphs VI: On several representaitions of graphs by relational structures”, Discrete Appl. Math., 54 (1994), 117–149 | DOI | MR
[8] A. V. Kostochka, T. Luczak, G. Simonyi and E. Sopena, “On the minimum number of edges giving maximum oriented chromatic number”, DIMACS Series in Discrete Mathematics and Theoretical Computer Science, 49 (1999), 179–182 | MR | Zbl
[9] A. V. Kostochka, E. Sopena and X. Zhu, “Acyclic and oriented chromatic numbers of graphs”, J. Graph Theory, 24 (1997), 331–340 | 3.0.CO;2-P class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[10] J. Nešetřil, A. Raspaud and E. Sopena, “Colorings and girth of oriented planar graphs”, Discrete Math., 165–166:1–3 (1997), 519–530 | MR | Zbl
[11] Pascal Ochem, “Oriented colorings of triangle-free planar graphs”, Inf. Process. Lett., 92:2 (2004), 71–76 | DOI | MR | Zbl
[12] A. Raspaud and E. Sopena, “Good and semi-strong colorings of oriented planar graphs”, Inf. Processing Letters, 51 (1994), 171–174 | DOI | MR | Zbl
[13] E. Sopena, “The chromatic number of oriented graphs”, J. Graph Theory, 25 (1997), 191–205 | 3.0.CO;2-G class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl