An oriented $7$-colouring of planar graphs with girth at least~$7$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 2 (2005), pp. 222-229.

Voir la notice de l'article provenant de la source Math-Net.Ru

An oriented $k$-colouring of digraph $H$ is an oriented homomorphism of $H$ into a $k$-vertex tournament. We prove that every orientation of a plane graph with girth at least $7$ has an oriented $7$-colouring.
@article{SEMR_2005_2_a14,
     author = {O. V. Borodin and A. O. Ivanova},
     title = {An oriented $7$-colouring of planar graphs with girth at least~$7$},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {222--229},
     publisher = {mathdoc},
     volume = {2},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2005_2_a14/}
}
TY  - JOUR
AU  - O. V. Borodin
AU  - A. O. Ivanova
TI  - An oriented $7$-colouring of planar graphs with girth at least~$7$
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2005
SP  - 222
EP  - 229
VL  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2005_2_a14/
LA  - ru
ID  - SEMR_2005_2_a14
ER  - 
%0 Journal Article
%A O. V. Borodin
%A A. O. Ivanova
%T An oriented $7$-colouring of planar graphs with girth at least~$7$
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2005
%P 222-229
%V 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2005_2_a14/
%G ru
%F SEMR_2005_2_a14
O. V. Borodin; A. O. Ivanova. An oriented $7$-colouring of planar graphs with girth at least~$7$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 2 (2005), pp. 222-229. http://geodesic.mathdoc.fr/item/SEMR_2005_2_a14/

[1] O. V. Borodin, “On acyclic colorings of planar graphs”, Discrete Math., 25 (1979), 211–236 | DOI | MR | Zbl

[2] O. V. Borodin, A. O. Ivanova, Orientirovannaya raskraska ploskikh grafov s obkhvatom ne menee 4 (to appear)

[3] O. V. Borodin, A. O. Ivanova, A. V. Kostochka, Orientirovannaya 5-raskraska razrezhennykh grafov (to appear)

[4] O. V. Borodin, A. V. Kostochka, J. Nešetřil, A. Raspaud and E. Sopena, “On universal graphs for planar oriented graphs of a given girth”, Discrete Mathematics, 188 (1998), 73–85 | DOI | MR | Zbl

[5] O. V. Borodin, A. V. Kostochka, J. Nešetřil, A. Raspaud and E. Sopena, “On the maximum average degree and the oriented chromatic number of a graph”, Discrete Mathematics, 206 (1999), 77–90 | DOI | MR

[6] O. V. Borodin, S.-J. Kim, A. V. Kostochka, and D. B. West, “Homomorphisms from sparse graphs with large girth”, Journal of Combinatorial Theory, Series B, 90 (2004), 147–159 | DOI | MR | Zbl

[7] B. Courselle, “The monadic second order logic of graphs VI: On several representaitions of graphs by relational structures”, Discrete Appl. Math., 54 (1994), 117–149 | DOI | MR

[8] A. V. Kostochka, T. Luczak, G. Simonyi and E. Sopena, “On the minimum number of edges giving maximum oriented chromatic number”, DIMACS Series in Discrete Mathematics and Theoretical Computer Science, 49 (1999), 179–182 | MR | Zbl

[9] A. V. Kostochka, E. Sopena and X. Zhu, “Acyclic and oriented chromatic numbers of graphs”, J. Graph Theory, 24 (1997), 331–340 | 3.0.CO;2-P class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[10] J. Nešetřil, A. Raspaud and E. Sopena, “Colorings and girth of oriented planar graphs”, Discrete Math., 165–166:1–3 (1997), 519–530 | MR | Zbl

[11] Pascal Ochem, “Oriented colorings of triangle-free planar graphs”, Inf. Process. Lett., 92:2 (2004), 71–76 | DOI | MR | Zbl

[12] A. Raspaud and E. Sopena, “Good and semi-strong colorings of oriented planar graphs”, Inf. Processing Letters, 51 (1994), 171–174 | DOI | MR | Zbl

[13] E. Sopena, “The chromatic number of oriented graphs”, J. Graph Theory, 25 (1997), 191–205 | 3.0.CO;2-G class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl