An oriented $7$-colouring of planar graphs with girth at least~$7$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 2 (2005), pp. 222-229
Voir la notice de l'article provenant de la source Math-Net.Ru
An oriented $k$-colouring of digraph $H$ is an oriented homomorphism of $H$ into a $k$-vertex tournament. We prove that every orientation of a plane graph with girth at least $7$ has an oriented $7$-colouring.
@article{SEMR_2005_2_a14,
author = {O. V. Borodin and A. O. Ivanova},
title = {An oriented $7$-colouring of planar graphs with girth at least~$7$},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {222--229},
publisher = {mathdoc},
volume = {2},
year = {2005},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2005_2_a14/}
}
TY - JOUR AU - O. V. Borodin AU - A. O. Ivanova TI - An oriented $7$-colouring of planar graphs with girth at least~$7$ JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2005 SP - 222 EP - 229 VL - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2005_2_a14/ LA - ru ID - SEMR_2005_2_a14 ER -
O. V. Borodin; A. O. Ivanova. An oriented $7$-colouring of planar graphs with girth at least~$7$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 2 (2005), pp. 222-229. http://geodesic.mathdoc.fr/item/SEMR_2005_2_a14/