Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2005_2_a12, author = {T.-L. Dinu}, title = {On a~nonlinear eigenvalue problem in {Sobolev} spaces with variable exponent}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {208--217}, publisher = {mathdoc}, volume = {2}, year = {2005}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2005_2_a12/} }
T.-L. Dinu. On a~nonlinear eigenvalue problem in Sobolev spaces with variable exponent. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 2 (2005), pp. 208-217. http://geodesic.mathdoc.fr/item/SEMR_2005_2_a12/
[1] A. Ambrosetti and P. Rabinowitz, “Dual variational methods in critical point theory and applications”, J. Funct. Anal., 14 (1973), 349–381 | DOI | MR | Zbl
[2] H. Brezis, Analyse fonctionnelle: théorie et applications, Masson, Paris, 1992 | MR
[3] L. Diening, Theoretical and numerical results for electrorheological fluids, Ph.D. thesis, University of Freiburg, Germany, 2002 | Zbl
[4] D. E. Edmunds, J. Lang, and A. Nekvinda, “On $L^{p(x)}$ norms”, Proc. Roy. Soc. London Ser. A, 455 (1999), 219–225 | DOI | MR | Zbl
[5] D. E. Edmunds and J. Rákosník, “Density of smooth functions in $W^{k,p(x)}(\Omega)$”, Proc. Roy. Soc. London Ser. A, 437 (1992), 229–236 | DOI | MR | Zbl
[6] D. E. Edmunds and J. Rákosník, “Sobolev embedding with variable exponent”, Studia Math., 143 (2000), 267–293 | MR | Zbl
[7] X. L. Fan and X. Han, “Existence and multiplicity of solutions for $p(x)$-Laplacian equations in $\mathbb R^N$”, Nonlinear Anal., 59 (2004), 173–188 | MR | Zbl
[8] X. L. Fan, Q. H. Zhang, and D. Zhao, “Eigenvalues of $p(x)$-Laplacian Dirichlet problem”, J. Math. Anal. Appl., 302 (2005), 306–317 | DOI | MR | Zbl
[9] X. L. Fan and D. Zhao, “On the spaces $L^{p(x)}(\Omega)$ and $W^{m,p(x)}(\Omega)$”, J. Math. Anal. Appl., 263 (2001), 424–446 | DOI | MR | Zbl
[10] J. P. Garcia Azorero and I. Peral Alonso, “Existence and nonuniqueness for the $p$-Laplacian nonlinear eigenvalues”, Comm. Partial Differential Equations, 12 (1987), 1389–1403 | MR
[11] Y. Jabri, The Mountain Pass Theorem. Variants, Generalizations and Some Applications, Encyclopedia of Mathematics and its Applications, 95, Cambridge University Press, Cambridge, 2003 | MR | Zbl
[12] J. L. Kazdan and F. W. Warner, “Remarks on some quasilinear elliptic equations”, Comm. Pure Appl. Math., 28 (1975), 567–597 | DOI | MR | Zbl
[13] O. Kováčik and J. Rákosník, “On spaces $L^{p(x)}$ and $W^{1,p(x)}$”, Czechoslovak Math. J., 41 (1991), 592–618 | MR | Zbl
[14] M. Lewin, “A mountain pass for reacting molecules”, Ann. Henri Poincaré, 5 (2004), 477–521 | MR | Zbl
[15] J. Musielak, Orlicz Spaces and Modular Spaces, Lecture Notes in Mathematics, 1034, Springer, Berlin, 1983 | MR | Zbl
[16] H. Nakano, Modulared Semi-ordered Linear Spaces, Maruzen Co., Ltd., Tokyo, 1950 | MR
[17] W. Orlicz, “Über konjugierte Exponentenfolgen”, Studia Math., 3 (1931), 200–212
[18] R. S. Palais and S. Smale, “A generalized Morse theory”, Bull. Amer. Math. Soc., 70 (1964), 165–171 | DOI | MR
[19] R. Precup, “An inequality which arises in the absence of the mountain pass geometry”, J. Inequal. Pure Appl. Math. (JIPAM), 3:3 (2002), Article 32, 10 pp., electronic | MR
[20] P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Regional Conference Series in Mathematics, 65, American Mathematical Society, Providence, RI, 1986 | MR
[21] M. Ruzicka, Electrorheological Fluids Modeling and Mathematical Theory, Springer-Verlag, Berlin, 2000 | MR
[22] I. Sharapudinov, “On the topology of the space $L^{p(t)}([0;1])$”, Matem. Zametki, 26 (1978), 613–632 | MR
[23] I. Tsenov, “Generalization of the problem of best approximation of a function in the space $L^s$”, Uch. Zap. Dagestan Gos. Univ., 7 (1961), 25–37