On a~nonlinear eigenvalue problem in Sobolev spaces with variable exponent
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 2 (2005), pp. 208-217
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider a class of nonlinear Dirichlet problems involving the $p(x)$–Laplace operator. Our framework is based on the theory of Sobolev spaces with variable exponent and we establish the existence of a weak solution in such a space. The proof relies on the Mountain Pass Theorem.
@article{SEMR_2005_2_a12,
author = {T.-L. Dinu},
title = {On a~nonlinear eigenvalue problem in {Sobolev} spaces with variable exponent},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {208--217},
publisher = {mathdoc},
volume = {2},
year = {2005},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2005_2_a12/}
}
T.-L. Dinu. On a~nonlinear eigenvalue problem in Sobolev spaces with variable exponent. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 2 (2005), pp. 208-217. http://geodesic.mathdoc.fr/item/SEMR_2005_2_a12/