A~lower bound for the arithmetical complexity of Sturmian words
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 2 (2005), pp. 14-22

Voir la notice de l'article provenant de la source Math-Net.Ru

We give an $O(n^3)$ lower bound for the arithmetical complexity of a Sturmian word, that is the number of words of length $n$ occuring in all arithmetic progressions of a Sturmian word. This result supplements the recent $O(n^3)$ upper bound for the same function by Cassaigne and Frid.
@article{SEMR_2005_2_a1,
     author = {A. \`E. Frid},
     title = {A~lower bound for the arithmetical complexity of {Sturmian} words},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {14--22},
     publisher = {mathdoc},
     volume = {2},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2005_2_a1/}
}
TY  - JOUR
AU  - A. È. Frid
TI  - A~lower bound for the arithmetical complexity of Sturmian words
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2005
SP  - 14
EP  - 22
VL  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2005_2_a1/
LA  - ru
ID  - SEMR_2005_2_a1
ER  - 
%0 Journal Article
%A A. È. Frid
%T A~lower bound for the arithmetical complexity of Sturmian words
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2005
%P 14-22
%V 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2005_2_a1/
%G ru
%F SEMR_2005_2_a1
A. È. Frid. A~lower bound for the arithmetical complexity of Sturmian words. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 2 (2005), pp. 14-22. http://geodesic.mathdoc.fr/item/SEMR_2005_2_a1/