Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2005_2_a1, author = {A. \`E. Frid}, title = {A~lower bound for the arithmetical complexity of {Sturmian} words}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {14--22}, publisher = {mathdoc}, volume = {2}, year = {2005}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2005_2_a1/} }
A. È. Frid. A~lower bound for the arithmetical complexity of Sturmian words. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 2 (2005), pp. 14-22. http://geodesic.mathdoc.fr/item/SEMR_2005_2_a1/
[1] S. V. Avgustinovich, D. G. Fon-Der-Flaass, A. E. Frid, “Arithmetical complexity of infinite words”, Words, Languages and Combinatorics III, Proc. 3rd ICWLC, Kyoto, March 2000, World Scientific, Singapore, 2003, 51–62 | MR
[2] J. Berstel, D. Perrin, “Finite and infinite words”: M. Lothaire, Algebraic Combinatorics on Words, Cambridge University Press, 2002, 1–39 | MR
[3] J. Berstel, P. Séébold, “Sturmian words”: M. Lothaire, Algebraic Combinatorics on Words, Cambridge University Press, 2002, 40–97 | MR
[4] J. Cassaigne, A. Frid, On arithmetical complexity of Sturmian words (to appear)
[5] E. M. Coven, G. A. Hedlund, “Sequences with minimal block growth”, Math. Systems Theory, 7 (2003), 138–153 | DOI | MR
[6] N. J. Fine and H. S. Wilf, “Uniqueness theorem for periodic functions”, Proc. Amer. Math. Soc., 16 (1965), 109–114 | MR | Zbl
[7] A. Frid, “Arithmetical complexity of symmetric D0L words”, Theoret. Comput. Sci., 306 (2003), 535–542 | DOI | MR | Zbl
[8] A. Frid, On possible growth of arithmetical complexity, http://www.math.nsc.ru/LBRT/k4/Frid/frid_for_ita.ps
[9] A. Frid, “Sequences of linear arithmetical complexity”, Theoret. Comput. Sci. (to appear) | MR
[10] T. Kamae, L. Zamboni, “Sequence entropy and the maximal pattern complexity of infinite words”, Ergodic Theory Dynam. Systems, 22 (2002), 1191–1199 | MR | Zbl
[11] F. Mignosi, A. Restivo, “Periodicity”: M. Lothaire, Algebraic Combinatorics on Words, Cambridge University Press, 2002, 237–274 | MR
[12] G. Rote, “Sequences with subword complexity $2n$”, J. Number Th., 46 (1994), 196–213 | DOI | MR | Zbl
[13] L. Vuillon, “A characterisation of Sturmian words by return words”, European Journal of Combinatorics, 22 (2001), 263–275 | DOI | MR | Zbl