Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2004_1_a8, author = {V. A. Tashkinov}, title = {A lower bound for the chromatic number of graphs with a given maximal degree and girth}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {99--109}, publisher = {mathdoc}, volume = {1}, year = {2004}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2004_1_a8/} }
TY - JOUR AU - V. A. Tashkinov TI - A lower bound for the chromatic number of graphs with a given maximal degree and girth JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2004 SP - 99 EP - 109 VL - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2004_1_a8/ LA - ru ID - SEMR_2004_1_a8 ER -
V. A. Tashkinov. A lower bound for the chromatic number of graphs with a given maximal degree and girth. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 1 (2004), pp. 99-109. http://geodesic.mathdoc.fr/item/SEMR_2004_1_a8/
[1] B. Grünbaum, “A problem in graph coloring”, Amer. Math. Monthly, 77:10 (1970), 1088–1092 | DOI | MR
[2] O.V. Borodin, A.V. Kostochka, “On an upper bound of a graph's chromatic number, depending on the graph's degree and density”, J. Combinatorial Theory Ser. B, 23 (1977), 247–250 | DOI | MR | Zbl
[3] A.V. Kostochka, “Degree, girth and chromatic number”, Combinatorics, Proc. Fifth Hungarian Colloq. (Keszthely, 1976), Vol. II, Colloq. Math. Soc. Ja'nos Bolyai, 18, North-Holland, Amsterdam–New York, 1978, 679–696 | MR
[4] J.-H. Kim, “On Brooks' theorem for sparse graphs”, Combin. Probab. Comput., 4 (1995), 97–132 | DOI | MR | Zbl
[5] A.V. Kostochka, N.P. Mazurova, “Odna otsenka v teorii raskraski grafov”, Metody diskretnogo analiza v reshenii kombinatornykh zadach, 30 (1977), 23–29 | Zbl