@article{SEMR_2004_1_a8,
author = {V. A. Tashkinov},
title = {A lower bound for the chromatic number of graphs with a given maximal degree and girth},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {99--109},
year = {2004},
volume = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2004_1_a8/}
}
V. A. Tashkinov. A lower bound for the chromatic number of graphs with a given maximal degree and girth. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 1 (2004), pp. 99-109. http://geodesic.mathdoc.fr/item/SEMR_2004_1_a8/
[1] B. Grünbaum, “A problem in graph coloring”, Amer. Math. Monthly, 77:10 (1970), 1088–1092 | DOI | MR
[2] O.V. Borodin, A.V. Kostochka, “On an upper bound of a graph's chromatic number, depending on the graph's degree and density”, J. Combinatorial Theory Ser. B, 23 (1977), 247–250 | DOI | MR | Zbl
[3] A.V. Kostochka, “Degree, girth and chromatic number”, Combinatorics, Proc. Fifth Hungarian Colloq. (Keszthely, 1976), Vol. II, Colloq. Math. Soc. Ja'nos Bolyai, 18, North-Holland, Amsterdam–New York, 1978, 679–696 | MR
[4] J.-H. Kim, “On Brooks' theorem for sparse graphs”, Combin. Probab. Comput., 4 (1995), 97–132 | DOI | MR | Zbl
[5] A.V. Kostochka, N.P. Mazurova, “Odna otsenka v teorii raskraski grafov”, Metody diskretnogo analiza v reshenii kombinatornykh zadach, 30 (1977), 23–29 | Zbl