$2$-distance coloring of sparse planar graphs
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 1 (2004), pp. 76-90
Voir la notice de l'article provenant de la source Math-Net.Ru
Clearly, the 2-distance chromatic number $\chi_2(G)$ of any graph $G$ with maximum degree $\Delta$ is at least $\Delta+1$. We prove that if $G$ is planar and its girth is large enough (w.r.t. a fixed $\Delta$), then $\chi_2(G)=\Delta+1$.
@article{SEMR_2004_1_a6,
author = {O. V. Borodin and A. O. Ivanova and T. K. Neustroeva},
title = {$2$-distance coloring of sparse planar graphs},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {76--90},
publisher = {mathdoc},
volume = {1},
year = {2004},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2004_1_a6/}
}
TY - JOUR AU - O. V. Borodin AU - A. O. Ivanova AU - T. K. Neustroeva TI - $2$-distance coloring of sparse planar graphs JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2004 SP - 76 EP - 90 VL - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2004_1_a6/ LA - ru ID - SEMR_2004_1_a6 ER -
O. V. Borodin; A. O. Ivanova; T. K. Neustroeva. $2$-distance coloring of sparse planar graphs. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 1 (2004), pp. 76-90. http://geodesic.mathdoc.fr/item/SEMR_2004_1_a6/