$2$-distance coloring of sparse planar graphs
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 1 (2004), pp. 76-90
Cet article a éte moissonné depuis la source Math-Net.Ru
Clearly, the 2-distance chromatic number $\chi_2(G)$ of any graph $G$ with maximum degree $\Delta$ is at least $\Delta+1$. We prove that if $G$ is planar and its girth is large enough (w.r.t. a fixed $\Delta$), then $\chi_2(G)=\Delta+1$.
@article{SEMR_2004_1_a6,
author = {O. V. Borodin and A. O. Ivanova and T. K. Neustroeva},
title = {$2$-distance coloring of sparse planar graphs},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {76--90},
year = {2004},
volume = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2004_1_a6/}
}
O. V. Borodin; A. O. Ivanova; T. K. Neustroeva. $2$-distance coloring of sparse planar graphs. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 1 (2004), pp. 76-90. http://geodesic.mathdoc.fr/item/SEMR_2004_1_a6/
[1] O.V. Borodin, Kh. Brusma, A.N. Glebov, Ya. Van den Khoivel, “Minimalnye stepeni i khromaticheskie chisla kvadratov ploskikh grafov”, Diskret. analiz i issled. operatsii, Ser. 1, 8:4 (2001), 9–33 | MR | Zbl
[2] G. Agnarsson, M.M. Halldórsson, Coloring powers of planar graphs, unpublished manuscript, 2000
[3] J. Van den Heuvel, S. McGuinness, Colouring the square of a planar graph, unpublished manuscript, 1999
[4] T.R. Jensen, B. Toft, Graph Coloring Problems, John-Wiley Sons, New York, 1995 | MR | Zbl
[5] G. Wegner, Graphs with given diameter and a coloring problem, Technical Report, University of Dortmund, 1977