$2$-distance coloring of sparse planar graphs
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 1 (2004), pp. 76-90

Voir la notice de l'article provenant de la source Math-Net.Ru

Clearly, the 2-distance chromatic number $\chi_2(G)$ of any graph $G$ with maximum degree $\Delta$ is at least $\Delta+1$. We prove that if $G$ is planar and its girth is large enough (w.r.t. a fixed $\Delta$), then $\chi_2(G)=\Delta+1$.
@article{SEMR_2004_1_a6,
     author = {O. V. Borodin and A. O. Ivanova and T. K. Neustroeva},
     title = {$2$-distance coloring of sparse planar graphs},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {76--90},
     publisher = {mathdoc},
     volume = {1},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2004_1_a6/}
}
TY  - JOUR
AU  - O. V. Borodin
AU  - A. O. Ivanova
AU  - T. K. Neustroeva
TI  - $2$-distance coloring of sparse planar graphs
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2004
SP  - 76
EP  - 90
VL  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2004_1_a6/
LA  - ru
ID  - SEMR_2004_1_a6
ER  - 
%0 Journal Article
%A O. V. Borodin
%A A. O. Ivanova
%A T. K. Neustroeva
%T $2$-distance coloring of sparse planar graphs
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2004
%P 76-90
%V 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2004_1_a6/
%G ru
%F SEMR_2004_1_a6
O. V. Borodin; A. O. Ivanova; T. K. Neustroeva. $2$-distance coloring of sparse planar graphs. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 1 (2004), pp. 76-90. http://geodesic.mathdoc.fr/item/SEMR_2004_1_a6/