Convergence and convergence rate to fractional Brownian motion for weighted random sums
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 1 (2004), pp. 47-63.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider infinite sums of weighted i.i.d. random variables, with finite variance and arbitrary distribution, and derive a necessary and sufficient conditions for the weak convergence (in function space with uniform topology) of normalized sums to fractional Brownian motion (FBM). We consider also convergence rates questions. Using the embedding suggested by the Komlós–Major–Tusnády strong approximations method, we derive (under certain conditions on the weights) estimates for the quality of the functional approximation to FBM.
@article{SEMR_2004_1_a4,
     author = {T. Konstantopoulos and A. Sakhanenko},
     title = {Convergence and convergence rate to fractional {Brownian} motion for weighted random sums},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {47--63},
     publisher = {mathdoc},
     volume = {1},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2004_1_a4/}
}
TY  - JOUR
AU  - T. Konstantopoulos
AU  - A. Sakhanenko
TI  - Convergence and convergence rate to fractional Brownian motion for weighted random sums
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2004
SP  - 47
EP  - 63
VL  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2004_1_a4/
LA  - en
ID  - SEMR_2004_1_a4
ER  - 
%0 Journal Article
%A T. Konstantopoulos
%A A. Sakhanenko
%T Convergence and convergence rate to fractional Brownian motion for weighted random sums
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2004
%P 47-63
%V 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2004_1_a4/
%G en
%F SEMR_2004_1_a4
T. Konstantopoulos; A. Sakhanenko. Convergence and convergence rate to fractional Brownian motion for weighted random sums. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 1 (2004), pp. 47-63. http://geodesic.mathdoc.fr/item/SEMR_2004_1_a4/

[1] Beran J., Sherman R., Taqqu M.S. and Willinger W., “Long-range dependence in variable bit rate video traffic”, IEEE Trans. Com., 43 (1995), 1566–1579 | DOI

[2] Berman S.M., “An asymptotic formula for the distribution of the maximum of a gaussian process with stationary increments”, J. Appl. Prob., 22 (1985), 454–460 | DOI | MR | Zbl

[3] Billingsley P., Convergence of Probability Measures, John Wiley Sons, New York, 1968 | MR | Zbl

[4] Box G.P., Jenkins G.M., and Reinsel G.C., Time Series Analysis, Prentice-Hall, 1994 | MR | Zbl

[5] Csörgő M. and Horváth L., Weighted Approximations in Probability and Statistics, Wiley, Chichester, 1993 | MR | Zbl

[6] Davydov Y.A., “The invariance principle for stationary processes”, Theory Prob. Appl., 15 (1970), 487–498 | DOI | MR

[7] Konstantopoulos T. and Lin S.J., “Fractional Brownian approximations of stochastic networks”, Stochastic Networks: Stability and Rare Events, Lecture Notes in Statistics, 117, eds. P. Glasserman, K. Sigman and D. Yao, Springer-Verlag, New York, 1996, 257–274 | MR

[8] Leland W.E., Taqqu M.S., Willinger W., and Wilson D.V., “On the self-similar nature of Ethernet traffic”, IEEE/ACM Trans. Netw., 1993

[9] Mandelbrot B. and Van Ness J., “Fractional Brownian motions, fractional noise and applications”, SIAM Review, 10 (1968), 422–437 | DOI | MR | Zbl