Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2004_1_a4, author = {T. Konstantopoulos and A. Sakhanenko}, title = {Convergence and convergence rate to fractional {Brownian} motion for weighted random sums}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {47--63}, publisher = {mathdoc}, volume = {1}, year = {2004}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2004_1_a4/} }
TY - JOUR AU - T. Konstantopoulos AU - A. Sakhanenko TI - Convergence and convergence rate to fractional Brownian motion for weighted random sums JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2004 SP - 47 EP - 63 VL - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2004_1_a4/ LA - en ID - SEMR_2004_1_a4 ER -
%0 Journal Article %A T. Konstantopoulos %A A. Sakhanenko %T Convergence and convergence rate to fractional Brownian motion for weighted random sums %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2004 %P 47-63 %V 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2004_1_a4/ %G en %F SEMR_2004_1_a4
T. Konstantopoulos; A. Sakhanenko. Convergence and convergence rate to fractional Brownian motion for weighted random sums. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 1 (2004), pp. 47-63. http://geodesic.mathdoc.fr/item/SEMR_2004_1_a4/
[1] Beran J., Sherman R., Taqqu M.S. and Willinger W., “Long-range dependence in variable bit rate video traffic”, IEEE Trans. Com., 43 (1995), 1566–1579 | DOI
[2] Berman S.M., “An asymptotic formula for the distribution of the maximum of a gaussian process with stationary increments”, J. Appl. Prob., 22 (1985), 454–460 | DOI | MR | Zbl
[3] Billingsley P., Convergence of Probability Measures, John Wiley Sons, New York, 1968 | MR | Zbl
[4] Box G.P., Jenkins G.M., and Reinsel G.C., Time Series Analysis, Prentice-Hall, 1994 | MR | Zbl
[5] Csörgő M. and Horváth L., Weighted Approximations in Probability and Statistics, Wiley, Chichester, 1993 | MR | Zbl
[6] Davydov Y.A., “The invariance principle for stationary processes”, Theory Prob. Appl., 15 (1970), 487–498 | DOI | MR
[7] Konstantopoulos T. and Lin S.J., “Fractional Brownian approximations of stochastic networks”, Stochastic Networks: Stability and Rare Events, Lecture Notes in Statistics, 117, eds. P. Glasserman, K. Sigman and D. Yao, Springer-Verlag, New York, 1996, 257–274 | MR
[8] Leland W.E., Taqqu M.S., Willinger W., and Wilson D.V., “On the self-similar nature of Ethernet traffic”, IEEE/ACM Trans. Netw., 1993
[9] Mandelbrot B. and Van Ness J., “Fractional Brownian motions, fractional noise and applications”, SIAM Review, 10 (1968), 422–437 | DOI | MR | Zbl