Convergence and convergence rate to fractional Brownian motion for weighted random sums
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 1 (2004), pp. 47-63

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider infinite sums of weighted i.i.d. random variables, with finite variance and arbitrary distribution, and derive a necessary and sufficient conditions for the weak convergence (in function space with uniform topology) of normalized sums to fractional Brownian motion (FBM). We consider also convergence rates questions. Using the embedding suggested by the Komlós–Major–Tusnády strong approximations method, we derive (under certain conditions on the weights) estimates for the quality of the functional approximation to FBM.
@article{SEMR_2004_1_a4,
     author = {T. Konstantopoulos and A. Sakhanenko},
     title = {Convergence and convergence rate to fractional {Brownian} motion for weighted random sums},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {47--63},
     publisher = {mathdoc},
     volume = {1},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2004_1_a4/}
}
TY  - JOUR
AU  - T. Konstantopoulos
AU  - A. Sakhanenko
TI  - Convergence and convergence rate to fractional Brownian motion for weighted random sums
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2004
SP  - 47
EP  - 63
VL  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2004_1_a4/
LA  - en
ID  - SEMR_2004_1_a4
ER  - 
%0 Journal Article
%A T. Konstantopoulos
%A A. Sakhanenko
%T Convergence and convergence rate to fractional Brownian motion for weighted random sums
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2004
%P 47-63
%V 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2004_1_a4/
%G en
%F SEMR_2004_1_a4
T. Konstantopoulos; A. Sakhanenko. Convergence and convergence rate to fractional Brownian motion for weighted random sums. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 1 (2004), pp. 47-63. http://geodesic.mathdoc.fr/item/SEMR_2004_1_a4/