Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2004_1_a3, author = {A. E. Mironov}, title = {Veselov-Novikov hierarchy of equations, and integrable deformations of minimal {Lagrangian} tori in~$\mathbb CP^2$}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {38--46}, publisher = {mathdoc}, volume = {1}, year = {2004}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2004_1_a3/} }
TY - JOUR AU - A. E. Mironov TI - Veselov-Novikov hierarchy of equations, and integrable deformations of minimal Lagrangian tori in~$\mathbb CP^2$ JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2004 SP - 38 EP - 46 VL - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2004_1_a3/ LA - ru ID - SEMR_2004_1_a3 ER -
%0 Journal Article %A A. E. Mironov %T Veselov-Novikov hierarchy of equations, and integrable deformations of minimal Lagrangian tori in~$\mathbb CP^2$ %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2004 %P 38-46 %V 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2004_1_a3/ %G ru %F SEMR_2004_1_a3
A. E. Mironov. Veselov-Novikov hierarchy of equations, and integrable deformations of minimal Lagrangian tori in~$\mathbb CP^2$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 1 (2004), pp. 38-46. http://geodesic.mathdoc.fr/item/SEMR_2004_1_a3/
[1] A. P. Veselov, S. P. Novikov, “Konechnozonnye dvumernye potentsialnye operator Shredingera. Yavnye formuly i evolyutsionnye uravneniya”, DAN CCCP, 279:1 (1984), 20–24 | MR | Zbl
[2] I. A. Taimanov, “Predstavlenie Veiershtrassa zamknutykh poverkhnostei v $\mathbb R^3$”, Funktsion. analiz i ego pril., 32:4 (1998), 49–62 | MR | Zbl
[3] B. A. Dubrovin, S. P. Novikov, I. M. Krichever, “Uravneniya Shredingera v periodicheskom pole i rimanovy poverkhnosti”, DAN SSSR, 229:1 (1976), 15–18 | MR | Zbl
[4] A. E. Mironov, “O novykh primerakh gamiltonovo–minimalnykh i minimalnakh lagranzhevykh podmnogoobraziyakh v $\mathbb C^n$ i $\mathbb CP^n$”, Matem. sb., 195:1 (2004), 89–102 | MR | Zbl
[5] I. Castro, F. Urbano, “Examples of unstable Hamiltonian-minimal Lagrangian tori in $\mathbb C^2$”, Compositio Mathematica, 111 (1998), 1–14 | DOI | MR | Zbl
[6] D. Joyce, “Special Lagrangian 3-folds and integrable systems”, Surveys on geometry and integrable systems, Adv. Stud. Pure Math., 51, Math. Soc. Japan, Tokyo, 2008, 189–233 | MR | Zbl
[7] R. A. Sharipov, “Minimalnye tory v pyatimernoi sfere”, Teor. i matem. fizika, 87:1 (1991), 48–56 | MR | Zbl
[8] H. Ma, J. Ma, Totally real minimal tori in $CP^2$, arXiv: math.DG/0106141
[9] E. Carberry, I. Mcintosh, “Minimal lagrangian 2-tori in $\mathbb CP^2$ come in real families of every dimention”, London J. of Math., 69:2 (2004), 531–544 | DOI | MR | Zbl
[10] N. Hitchin, “Harmonic maps from a 2-torus to the 3-sphere”, J. Diff. Geom., 31 (1990), 627–710 | MR | Zbl
[11] A. V. Mikhailov, “The reduction problem and the scattering method”, Physica 3D, 1 (1981), 73–117 | Zbl
[12] B. A. Dubrovin, V. B. Matveev, S. P. Novikov, “Nelineinye uravneniya tipa Kortvega–de Friza, konechnozonnye lineinye operatory i abelevy mnogoobraziya”, Uspekhi matem. nauk, 31:1 (1976), 55–136 | MR | Zbl
[13] B. G. Konopelchenko, “Induced surfaces and their integrable dynamics”, Stud. Appl. Math., 96:1 (1996), 9–51 | MR | Zbl
[14] I. A. Taimanov, “Modified Novikov–Veselov equation and differential geometry of surfaces”, Amer. Math. Soc. Transl., Ser. 2, 179 (1997), 133–151 | MR | Zbl
[15] A. E. Mironov, “O gamiltonovo-minimalnykh lagranzhevykh torakh v $\mathbb CP^2$”, Sibirskii matem. zhurnal, 44:6 (2003), 1324–1328 | MR | Zbl
[16] I. M. Krichever, “Nelineinye uravneniya i ellipticheskie krivye”, Sovremennye problemy matematiki, VINITI, 23, 1983, 79–136 | MR | Zbl