Sufficient conditions for planar graphs to be $2$-distance $(\Delta+1)$-colorable
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 1 (2004), pp. 129-141
Cet article a éte moissonné depuis la source Math-Net.Ru
A trivial lower bound for the $2$-distance chromatic number $\chi_2(G)$ of any graph $G$ with maximum degree $\Delta$ is $\Delta+1$. We prove that if $G$ is planar and its girth is at least $7$, then $\chi_2(G)=\Delta+1$ whenever $\Delta\ge 30$. On the other hand, we construct planar graphs with girth $5$ and $6$ that have arbitrarily large $\Delta$ and $\chi_2(G)>\Delta+1$.
@article{SEMR_2004_1_a11,
author = {O. V. Borodin and A. N. Glebov and A. O. Ivanova and T. K. Neustroeva and V. A. Tashkinov},
title = {Sufficient conditions for planar graphs to be $2$-distance $(\Delta+1)$-colorable},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {129--141},
year = {2004},
volume = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2004_1_a11/}
}
TY - JOUR AU - O. V. Borodin AU - A. N. Glebov AU - A. O. Ivanova AU - T. K. Neustroeva AU - V. A. Tashkinov TI - Sufficient conditions for planar graphs to be $2$-distance $(\Delta+1)$-colorable JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2004 SP - 129 EP - 141 VL - 1 UR - http://geodesic.mathdoc.fr/item/SEMR_2004_1_a11/ LA - ru ID - SEMR_2004_1_a11 ER -
%0 Journal Article %A O. V. Borodin %A A. N. Glebov %A A. O. Ivanova %A T. K. Neustroeva %A V. A. Tashkinov %T Sufficient conditions for planar graphs to be $2$-distance $(\Delta+1)$-colorable %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2004 %P 129-141 %V 1 %U http://geodesic.mathdoc.fr/item/SEMR_2004_1_a11/ %G ru %F SEMR_2004_1_a11
O. V. Borodin; A. N. Glebov; A. O. Ivanova; T. K. Neustroeva; V. A. Tashkinov. Sufficient conditions for planar graphs to be $2$-distance $(\Delta+1)$-colorable. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 1 (2004), pp. 129-141. http://geodesic.mathdoc.fr/item/SEMR_2004_1_a11/
[1] O.V. Borodin, Kh. Brusma, A.N. Glebov, Ya. Van den Khoivel, “Minimalnye stepeni i khromaticheskie chisla kvadratov ploskikh grafov”, Diskret. analiz i issled. operatsii. Ser. 1, 8:4 (2001), 9–33 | MR
[2] O.V. Borodin, A.O. Ivanova, T.K. Neustroeva, “2-distantsionnaya raskraska razrezhennykh ploskikh grafov”, Sibirskie elektronnye matematicheskie izvestiya, 1 (2004), 76–90
[3] T.R. Jensen, B. Toft, Graph coloring problems, John-Wiley Sons, New York, 1995 | MR | Zbl
[4] G. Wegner, Graphs with given diameter and a coloring problem, Technical Report. University of Dortmund, 1977