Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2004_1_a1, author = {M. S. Sheremet}, title = {A completeness theorem for the {Evans} logic of identities}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {24--34}, publisher = {mathdoc}, volume = {1}, year = {2004}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2004_1_a1/} }
M. S. Sheremet. A completeness theorem for the Evans logic of identities. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 1 (2004), pp. 24-34. http://geodesic.mathdoc.fr/item/SEMR_2004_1_a1/
[1] T. Evans, “The word problem for abstract algebras”, J. London Math. Soc., 26:1 (1951), 64–71 | DOI | MR | Zbl
[2] H.Höft, “Weak and strong equations in partial algebras”, Algebra Univers., 3:2 (1973), 203–215 | DOI | MR | Zbl
[3] J. Słomiński, Peano-algebras and quasi-algebras, Diss. Math., 57, 1968 | MR
[4] A. Robinson, “Equational logic for partial functions under Kleene equality: a complete and incomplete set of rules”, J. Symb. Logic, 54:2 (1989), 354–362 | DOI | MR | Zbl
[5] P. Burmeister, A model-theoretic oriented approach to partial algebras, Part I, Academie-Verlag, Berlin, 1986 | MR
[6] L. Rudak, “A completeness theorem for weak equational logic”, Algebra Univers., 16:3 (1983), 331–337 | DOI | MR | Zbl
[7] T. Evans, “Embeddability and the word problem”, J. London Math. Soc., 28:1 (1953), 76–80 | DOI | MR | Zbl
[8] A. I. Maltsev, “Kvaziprimitivnye klassy abstraktnykh algebr”, Dokl. AN SSSR, 108:2 (1956), 187–189 | MR