Voir la notice de l'acte provenant de la source Numdam
The lecture presents current results on heat trace expansions, and the related resolvent trace and zeta function expansions, for elliptic operators with boundary conditions on -dimensional compact manifolds. As a background, we recall the set-up of elliptic differential operators with differential boundary conditions having heat trace expansions in powers . Then we consider the spectral boundary conditions of Atiyah, Patodi and Singer for Dirac-type first-order operators, leading to expansions with additional logarithmic terms (joint work with Seeley 1995) ; an extension to “well-posed” problems is included in a general study of pseudo-normal boundary conditions (1999). New results are presented on the vanishing or stability of the -coefficients ; special features appear when is odd. Finally, we study the pseudodifferential projection boundary conditions proposed by Vassilevich (2001) in string- and brane-theory, showing that they too have heat expansions with log-terms, under suitable hypotheses. In all cases, the lowest log-coefficient vanishes, which assures that the zeta function is regular at 0.
Grubb, Gerd 1
@article{SEDP_2001-2002____A15_0, author = {Grubb, Gerd}, title = {Conditions au bord spectrales et formules de trace}, journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique) dit aussi "S\'eminaire Goulaouic-Schwartz"}, note = {talk:15}, pages = {1--12}, publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique}, year = {2001-2002}, language = {fr}, url = {http://geodesic.mathdoc.fr/item/SEDP_2001-2002____A15_0/} }
TY - JOUR AU - Grubb, Gerd TI - Conditions au bord spectrales et formules de trace JO - Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" N1 - talk:15 PY - 2001-2002 SP - 1 EP - 12 PB - Centre de mathématiques Laurent Schwartz, École polytechnique UR - http://geodesic.mathdoc.fr/item/SEDP_2001-2002____A15_0/ LA - fr ID - SEDP_2001-2002____A15_0 ER -
%0 Journal Article %A Grubb, Gerd %T Conditions au bord spectrales et formules de trace %J Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" %Z talk:15 %D 2001-2002 %P 1-12 %I Centre de mathématiques Laurent Schwartz, École polytechnique %U http://geodesic.mathdoc.fr/item/SEDP_2001-2002____A15_0/ %G fr %F SEDP_2001-2002____A15_0
Grubb, Gerd. Conditions au bord spectrales et formules de trace. Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (2001-2002), Exposé no. 15, 12 p. http://geodesic.mathdoc.fr/item/SEDP_2001-2002____A15_0/
[BM71] Boundary problems for pseudo-differential operators, Acta Math., Volume 126 (1971), pp. 11-51 | Zbl | MR
[DGK99] Heat asymptotics with spectral boundary conditions, AMS Contemporary Math., Volume 242 (1999), pp. 107-124 | Zbl | MR
[FGLS96] The noncommutative residue for manifolds with boundary, J. Funct. Anal., Volume 142 (1996), pp. 1-31 | Zbl | MR
[G01] A weakly polyhomogeneous calculus for pseudodifferential boundary problems, J. Functional An., Volume 184 (2001), pp. 19-76 | Zbl | MR
[G01’] Poles of zeta and eta functions for perturbations of the Atiyah-Patodi-Singer problem, Comm. Math. Phys., Volume 215 (2001), pp. 583-589 | Zbl
[G02] Logarithmic terms in trace expansions of Atiyah-Patodi-Singer problems (2002) (preprint) | Zbl | MR
[G02’] Spectral boundary conditions for second-order elliptic operators (2002) (preprint)
[G73] Weakly semibounded boundary problems and sesquilinear forms, Ann. Inst. Fourier, Volume 23 (1973), pp. 145-194 | mathdoc-id | Zbl | MR | EuDML
[G74] Properties of normal boundary problems for elliptic even-order systems, Ann. Sc. Norm. Sup. Pisa, Ser. IV, Volume 1 (1974), pp. 1-61 | mathdoc-id | Zbl | MR | EuDML
[G96] Functional Calculus of Pseudodifferential Boundary Problems, Second Edition, Progress in Mathematics, 65, Birkhäuser, Boston, 1996 | Zbl | MR
[G97] Parametrized pseudodifferential operators and geometric invariants, Microlocal Analysis and Spectral Theory, Kluwer, Dordrecht, 1997, pp. 115-164 | Zbl | MR
[G99] Trace expansions for pseudodifferential boundary problems for Dirac-type operators and more general systems, Arkiv f. Mat., Volume 37 (1999), pp. 45-86 | Zbl | MR
[GG98] Logarithmic terms in asymptotic expansions of heat operator traces, Comm. Part. Diff. Eq., Volume 23 (1998), pp. 777-792 | Zbl | MR
[Gi95] Invariance Theory, the Heat Equation, and the Atiyah–Singer Index Theorem, CRC Press, Boca Raton, 1995 | Zbl | MR
[GK02] Heat asymptotics with spectral boundary conditions II (preprint) | Zbl
[Gre71] An asymptotic expansion for the heat equation, Arch. Rational Mech. Anal., Volume 41 (1971), pp. 163-218 | Zbl | MR
[GS95] Weakly parametric pseudodifferential operators and Atiyah-Patodi-Singer boundary problems, Inventiones Math., Volume 121 (1995), pp. 481-529 | Zbl | MR
[GS96] Zeta and eta functions for Atiyah-Patodi-Singer operators, Journal of Geometric Analysis, Volume 6 (1996), pp. 31-77 | Zbl | MR
[GSc01] Trace expansions and the noncommutative residue for manifolds with boundary, J. Reine Angew. Math. (Crelle’s Journal), Volume 536 (2001), pp. 167-207 | Zbl
[MP49] Some properties of the eigenfunctions of the Laplace operator on Riemannian manifolds, Canad. J. Math., Volume 1 (1949), pp. 242-256 | Zbl | MR
[MS67] Curvature and the eigenvalues of the Laplacian, J. Diff. Geom., Volume 1 (1967), pp. 43-69 | Zbl | MR
[S69] The resolvent of an elliptic boundary problem, Amer. J. Math., Volume 91 (1969), pp. 889-920 | Zbl | MR
[S69’] Analytic extension of the trace associated with elliptic boundary problems, Amer. J. Math., Volume 91 (1969), pp. 963-983 | Zbl
[S69”] Topics in Pseudo-Differential Operators, C.I.M.E. Conf. on Pseudo-Differential Operators, Edizioni Cremonese, Roma (1969), pp. 169-305
[V01] Spectral branes, J. High Energy Phys., Volume 0103 (2001), pp. 023 | MR
[V02] Spectral geometry for strings and branes, Nuclear Physics B (Proc. Suppl.), Volume 104 (2002), pp. 208-211 | MR
[W84] Spectral asymmetry and noncommutative residue, Steklov Institute of Mathematics, Moscow (1984) (Ph. D. Thesis in Russian)
[W84’] Local invariants of spectral asymmetry, Inventiones Math., Volume 75 (1984), pp. 143-178 | Zbl