The lecture presents current results on heat trace expansions, and the related resolvent trace and zeta function expansions, for elliptic operators with boundary conditions on -dimensional compact manifolds. As a background, we recall the set-up of elliptic differential operators with differential boundary conditions having heat trace expansions in powers . Then we consider the spectral boundary conditions of Atiyah, Patodi and Singer for Dirac-type first-order operators, leading to expansions with additional logarithmic terms (joint work with Seeley 1995) ; an extension to “well-posed” problems is included in a general study of pseudo-normal boundary conditions (1999). New results are presented on the vanishing or stability of the -coefficients ; special features appear when is odd. Finally, we study the pseudodifferential projection boundary conditions proposed by Vassilevich (2001) in string- and brane-theory, showing that they too have heat expansions with log-terms, under suitable hypotheses. In all cases, the lowest log-coefficient vanishes, which assures that the zeta function is regular at 0.
Grubb, Gerd  1
@article{SEDP_2001-2002____A15_0,
author = {Grubb, Gerd},
title = {Conditions au bord spectrales et formules de trace},
journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique) dit aussi "S\'eminaire Goulaouic-Schwartz"},
note = {talk:15},
pages = {1--12},
year = {2001-2002},
publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique},
language = {fr},
url = {http://geodesic.mathdoc.fr/item/SEDP_2001-2002____A15_0/}
}
TY - JOUR AU - Grubb, Gerd TI - Conditions au bord spectrales et formules de trace JO - Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" N1 - talk:15 PY - 2001-2002 SP - 1 EP - 12 PB - Centre de mathématiques Laurent Schwartz, École polytechnique UR - http://geodesic.mathdoc.fr/item/SEDP_2001-2002____A15_0/ LA - fr ID - SEDP_2001-2002____A15_0 ER -
%0 Journal Article %A Grubb, Gerd %T Conditions au bord spectrales et formules de trace %J Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" %Z talk:15 %D 2001-2002 %P 1-12 %I Centre de mathématiques Laurent Schwartz, École polytechnique %U http://geodesic.mathdoc.fr/item/SEDP_2001-2002____A15_0/ %G fr %F SEDP_2001-2002____A15_0
Grubb, Gerd. Conditions au bord spectrales et formules de trace. Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (2001-2002), Exposé no. 15, 12 p.. http://geodesic.mathdoc.fr/item/SEDP_2001-2002____A15_0/