I lavori di June Huh
Matematica, cultura e società, Série 1, Tome 8 (2023) no. 2, pp. 141-155.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

Una delle quattro medaglie Fields assegnate nel 2022 è stata vinta dal matematico June Huh, per isuoi contributi altamente innovativi alla combinatoria. I lavori di June Huh, oltre a risolvere brillantemente varie congetture aperte da molto tempo, creano un nuovo ponte tra la combinatoria e settori della matematica in apparenza molto distanti quali la topologia e la geometria algebrica. In questo articolo ci proponiamo di dare una introduzione il più possibile elementare alla combinatoria e di spiegare alcuni tra i principali risultati di Huh dando anche un'idea dell'originalità dei suoi metodi.
One of the four Fields medals assigned in 2022 has been awarded to the mathematician June Huh for his highly innovative contributions to combinatorics. Huh's papers, beside briliantly solving several long standing conjectures, build a new bridge between combinatorics and seemingly unrelated fields of mathematics such as topology and algebraic geometry. The purpose of this paper is to give an introduction, as elementary as possible, to combinatorics and explain some of Huh's main results, as well as giving an idea of the innovativeness of his methods.
@article{RUMI_2023_1_8_2_a3,
     author = {Migliorini, Luca and Pagaria, Roberto},
     title = {I lavori di {June} {Huh}},
     journal = {Matematica, cultura e societ\`a},
     pages = {141--155},
     publisher = {mathdoc},
     volume = {Ser. 1, 8},
     number = {2},
     year = {2023},
     zbl = {1535.01078},
     mrnumber = {4583774},
     language = {it},
     url = {http://geodesic.mathdoc.fr/item/RUMI_2023_1_8_2_a3/}
}
TY  - JOUR
AU  - Migliorini, Luca
AU  - Pagaria, Roberto
TI  - I lavori di June Huh
JO  - Matematica, cultura e società
PY  - 2023
SP  - 141
EP  - 155
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RUMI_2023_1_8_2_a3/
LA  - it
ID  - RUMI_2023_1_8_2_a3
ER  - 
%0 Journal Article
%A Migliorini, Luca
%A Pagaria, Roberto
%T I lavori di June Huh
%J Matematica, cultura e società
%D 2023
%P 141-155
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RUMI_2023_1_8_2_a3/
%G it
%F RUMI_2023_1_8_2_a3
Migliorini, Luca; Pagaria, Roberto. I lavori di June Huh. Matematica, cultura e società, Série 1, Tome 8 (2023) no. 2, pp. 141-155. http://geodesic.mathdoc.fr/item/RUMI_2023_1_8_2_a3/

[ADH23] Federico Ardila, Graham Denham, and June Huh, Lagrangian geometry of matroids, J. Amer. Math. Soc. 36 (2023), no. 3, 727-794. | DOI | MR | Zbl

[AHK18] Karim Adiprasito, June Huh, and Eric Katz, Hodge theory for combinatorial geometries, Ann. of Math.(2) 188 (2018), no. 2, 381-452. | DOI | MR | Zbl

[AZ18] Martin Aigner and Günter M. Ziegler, Proofs from The Book, sixth ed., Springer, Berlin, 2018. | DOI | MR | Zbl

[BH20] Petter Brändén and June Huh, Lorentzian polynomials, Ann. Of Math. (2) 192 (2020), no. 3, 821-891. | DOI | MR | Zbl

[BHM+20] Tom Braden, June Huh, Jacob P. Matherne, Nicholas Proudfoot, and Botong Wang, A semi-small decomposition of the chow ring of a matroid, 2020. | DOI | MR | Zbl

[BHM+23] Tom Braden, June Huh, Jacob P. Matherne, Nicholas Proudfoot, and Botong Wang, Singular Hodge theory for combinatorial geometries, 2023. | Zbl

[Brä15] Petter Brändén, Unimodality, log-concavity, real-rootedness and beyond, Handbook of enumerative combinatorics, Discrete Math. Appl. (Boca Raton), CRC Press, Boca Raton, FL, 2015, pp. 437-483. | MR | Zbl

[Bre94] Francesco Brenti, Log-concave and unimodal sequences in algebra, combinatorics, and geometry: an update, Jerusalem combinatorics '93, Contemp. Math., vol.178, Amer. Math. Soc., Providence, RI, 1994, pp. 71-89. | DOI | MR | Zbl

[DBE48] Nicolaas G. De Bruijn and Paul Erdös, On a combinatioral problem, Indagationes Mathematicae 10 (1948), 421-423. | Zbl

[DCP95] Corrado De Concini and Claudio Procesi, Wonderful models of subspace arrangements, Selecta Math. (N.S.) 1 (1995), no. 3, 459-494. | DOI | MR | Zbl

[DW74] Thomas A. Dowling and Richard M. Wilson, The slimmest geometric lattices, Trans. Amer. Math. Soc. 196 (1974), 203-215. | DOI | MR | Zbl

[DW75] Thomas A. Dowling and Richard M. Wilson, Whitney number inequalities for geometric lattices, Proc. Amer. Math. Soc. 47 (1975), 504-512. | DOI | MR | Zbl

[EW14] Ben Elias and Geordie Williamson, The Hodge theory of Soergel bimodules, Ann. Of Math. (2) 180 (2014),no. 3, 1089-1136. | DOI | MR | Zbl

[FY04] Eva Maria Feichtner and Sergey Yuzvinsky, Chowrings of toric varieties defined by atomic lattices, Invent.Math. 155 (2004), no. 3, 515-536. | DOI | MR | Zbl

[GGW14] Jim Geelen, Bert Gerards, and Geoff Whittle, Solving Rota's conjecture, Notices Amer. Math. Soc. 61 (2014), no. 7, 736-743. | DOI | MR | Zbl

[GKP94] Ronald L. Graham, Donald E. Knuth, and Oren Patashnik, Concrete mathematics, second ed., Addison Wesley Publishing Company, Reading, MA, 1994, A foundation for computer science. | MR | Zbl

[GM80] Mark Goresky and Robert Mac-Pherson, Intersection homology theory, Topology 19 (1980), no. 2, 135-162. | DOI | MR | Zbl

[GM83] Mark Goresky and Robert Mac-Pherson, Intersection homology. II, Invent. Math. 72 (1983), no. 1, 77-129. | fulltext EuDML | DOI | MR | Zbl

[HK12] June Huh and Eric Katz, Log-concavity of characteristic polynomials and the Bergman fan of matroids, Math.Ann. 354 (2012), no. 3, 1103-1116. | DOI | MR | Zbl

[Huh12] June Huh, Milnor numbers of projective hypersurfaces and the chromatic polynomial of graphs, J. Amer.Math. Soc. 25 (2012), no. 3, 907-927. | DOI | MR | Zbl

[Kal22] Gil Kalai, The work of June Huh, Proceedings of theInternational Congress of Mathematicians, vol. 28, 2022, https://www.mathunion.org/fileadmin/IMU/Prizes/Fields/2022/laudatio-jh.pdf. | Zbl

[Knu74] Donald E. Knuth, The asymptotic number of geometries, J. Combinatorial Theory Ser. A 16 (1974), 398-400. | DOI | MR | Zbl

[Knu11] Donald E. Knuth, The art of computer programming, Addison-Wesley, Upper Saddle River, NJ, 1975-2011. | MR | Zbl

[Mor78] John W. Morgan, The algebraic topology of smooth algebraic varieties, Inst. Hautes Études Sci. Publ. Math. (1978), no. 48, 137-204. | fulltext EuDML | MR | Zbl

[Nel18] Peter Nelson, Almost all matroids are nonrepresentable, Bull. Lond. Math. Soc. 50 (2018), no. 2, 245-248. | DOI | MR | Zbl

[NK09] HIROKAZU NISHIMURA and SUSUMU KURODA (eds.), A lost mathematician, Takeo Nakasawa, Birkhäuser Verlag,Basel, 2009, The forgotten father of matroid theory. | DOI | MR | Zbl

[OS80] Peter Orlik and Louis Solomon, Combinatorics and topology of complements of hyperplanes, Invent. Math. 56 (1980), no. 2, 167-189. | fulltext EuDML | DOI | MR | Zbl

[OT92] Peter Orlik and Hiroaki Terao, Arrangements of hyperplanes, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 300, Springer-Verlag, Berlin, 1992. | DOI | MR | Zbl

[Oxl11] James Oxley, Matroid theory, second ed., Oxford Graduate Texts in Mathematics, vol. 21, Oxford University Press, Oxford, 2011. | DOI | MR | Zbl

[Rot97] Gian-Carlo Rota, Combinatorics, representation theory and invariant theory, pp. 39-54, Birkhäuser Boston,Boston, MA, 1997. | MR | Zbl

[Sta89] Richard P. Stanley, Log-concave and unimodal sequences in algebra, combinatorics, and geometry, Graph theory and its applications: East and West (Jinan, 1986), Ann. New York Acad. Sci., vol. 576, New York Acad. Sci., New York, 1989, pp. 500-535. | DOI | MR | Zbl

[Sta12] Richard P. Stanley, Enumerative combinatorics. Volume 1, second ed., Cambridge Studies in Advanced Mathematics, vol. 49, Cambridge University Press, Cambridge,2012. | MR | Zbl

[Whi35] Hassler Whitney, On the Abstract Properties of Linear Dependence, Amer. J. Math. 57 (1935), no. 3, 509-533. | DOI | MR | Zbl

[Yuz99] Sergey Yuzvinsky, Rational model of subspace complement on atomic complex, Publ. Inst. Math. (Beograd) (N.S.) 66 (1999), no. 80, 157-164, Geometric combinatorics(Kotor, 1998). 7 | fulltext EuDML | MR | Zbl

[Yuz02] Sergey Yuzvinsky, Small rational model of subspace complement, Trans. Amer. Math. Soc. 354 (2002), no. 5, 1921-1945. | DOI | MR | Zbl