Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{RUMI_2023_1_8_2_a3, author = {Migliorini, Luca and Pagaria, Roberto}, title = {I lavori di {June} {Huh}}, journal = {Matematica, cultura e societ\`a}, pages = {141--155}, publisher = {mathdoc}, volume = {Ser. 1, 8}, number = {2}, year = {2023}, zbl = {1535.01078}, mrnumber = {4583774}, language = {it}, url = {http://geodesic.mathdoc.fr/item/RUMI_2023_1_8_2_a3/} }
Migliorini, Luca; Pagaria, Roberto. I lavori di June Huh. Matematica, cultura e società, Série 1, Tome 8 (2023) no. 2, pp. 141-155. http://geodesic.mathdoc.fr/item/RUMI_2023_1_8_2_a3/
[ADH23] Lagrangian geometry of matroids, J. Amer. Math. Soc. 36 (2023), no. 3, 727-794. | DOI | MR | Zbl
, , and ,[AHK18] Hodge theory for combinatorial geometries, Ann. of Math.(2) 188 (2018), no. 2, 381-452. | DOI | MR | Zbl
, , and ,[AZ18] Proofs from The Book, sixth ed., Springer, Berlin, 2018. | DOI | MR | Zbl
and ,[BH20] Lorentzian polynomials, Ann. Of Math. (2) 192 (2020), no. 3, 821-891. | DOI | MR | Zbl
and ,[BHM+20] A semi-small decomposition of the chow ring of a matroid, 2020. | DOI | MR | Zbl
, , , , and ,[BHM+23] Singular Hodge theory for combinatorial geometries, 2023. | Zbl
, , , , and ,[Brä15] Unimodality, log-concavity, real-rootedness and beyond, Handbook of enumerative combinatorics, Discrete Math. Appl. (Boca Raton), CRC Press, Boca Raton, FL, 2015, pp. 437-483. | MR | Zbl
,[Bre94] Log-concave and unimodal sequences in algebra, combinatorics, and geometry: an update, Jerusalem combinatorics '93, Contemp. Math., vol.178, Amer. Math. Soc., Providence, RI, 1994, pp. 71-89. | DOI | MR | Zbl
,[DBE48] On a combinatioral problem, Indagationes Mathematicae 10 (1948), 421-423. | Zbl
and ,[DCP95] Wonderful models of subspace arrangements, Selecta Math. (N.S.) 1 (1995), no. 3, 459-494. | DOI | MR | Zbl
and ,[DW74] The slimmest geometric lattices, Trans. Amer. Math. Soc. 196 (1974), 203-215. | DOI | MR | Zbl
and ,[DW75] Whitney number inequalities for geometric lattices, Proc. Amer. Math. Soc. 47 (1975), 504-512. | DOI | MR | Zbl
and ,[EW14] The Hodge theory of Soergel bimodules, Ann. Of Math. (2) 180 (2014),no. 3, 1089-1136. | DOI | MR | Zbl
and ,[FY04] Chowrings of toric varieties defined by atomic lattices, Invent.Math. 155 (2004), no. 3, 515-536. | DOI | MR | Zbl
and ,[GGW14] Solving Rota's conjecture, Notices Amer. Math. Soc. 61 (2014), no. 7, 736-743. | DOI | MR | Zbl
, , and ,[GKP94] Concrete mathematics, second ed., Addison Wesley Publishing Company, Reading, MA, 1994, A foundation for computer science. | MR | Zbl
, , and ,[GM80] Intersection homology theory, Topology 19 (1980), no. 2, 135-162. | DOI | MR | Zbl
and ,[GM83] Intersection homology. II, Invent. Math. 72 (1983), no. 1, 77-129. | fulltext EuDML | DOI | MR | Zbl
and ,[HK12] Log-concavity of characteristic polynomials and the Bergman fan of matroids, Math.Ann. 354 (2012), no. 3, 1103-1116. | DOI | MR | Zbl
and ,[Huh12] Milnor numbers of projective hypersurfaces and the chromatic polynomial of graphs, J. Amer.Math. Soc. 25 (2012), no. 3, 907-927. | DOI | MR | Zbl
,[Kal22] The work of June Huh, Proceedings of theInternational Congress of Mathematicians, vol. 28, 2022, https://www.mathunion.org/fileadmin/IMU/Prizes/Fields/2022/laudatio-jh.pdf. | Zbl
,[Knu74] The asymptotic number of geometries, J. Combinatorial Theory Ser. A 16 (1974), 398-400. | DOI | MR | Zbl
,[Knu11] The art of computer programming, Addison-Wesley, Upper Saddle River, NJ, 1975-2011. | MR | Zbl
,[Mor78] The algebraic topology of smooth algebraic varieties, Inst. Hautes Études Sci. Publ. Math. (1978), no. 48, 137-204. | fulltext EuDML | MR | Zbl
,[Nel18] Almost all matroids are nonrepresentable, Bull. Lond. Math. Soc. 50 (2018), no. 2, 245-248. | DOI | MR | Zbl
,[NK09] HIROKAZU NISHIMURA and SUSUMU KURODA (eds.), A lost mathematician, Takeo Nakasawa, Birkhäuser Verlag,Basel, 2009, The forgotten father of matroid theory. | DOI | MR | Zbl
[OS80] Combinatorics and topology of complements of hyperplanes, Invent. Math. 56 (1980), no. 2, 167-189. | fulltext EuDML | DOI | MR | Zbl
and ,[OT92] Arrangements of hyperplanes, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 300, Springer-Verlag, Berlin, 1992. | DOI | MR | Zbl
and ,[Oxl11] Matroid theory, second ed., Oxford Graduate Texts in Mathematics, vol. 21, Oxford University Press, Oxford, 2011. | DOI | MR | Zbl
,[Rot97] Combinatorics, representation theory and invariant theory, pp. 39-54, Birkhäuser Boston,Boston, MA, 1997. | MR | Zbl
,[Sta89] Log-concave and unimodal sequences in algebra, combinatorics, and geometry, Graph theory and its applications: East and West (Jinan, 1986), Ann. New York Acad. Sci., vol. 576, New York Acad. Sci., New York, 1989, pp. 500-535. | DOI | MR | Zbl
,[Sta12] Enumerative combinatorics. Volume 1, second ed., Cambridge Studies in Advanced Mathematics, vol. 49, Cambridge University Press, Cambridge,2012. | MR | Zbl
,[Whi35] On the Abstract Properties of Linear Dependence, Amer. J. Math. 57 (1935), no. 3, 509-533. | DOI | MR | Zbl
,[Yuz99] Rational model of subspace complement on atomic complex, Publ. Inst. Math. (Beograd) (N.S.) 66 (1999), no. 80, 157-164, Geometric combinatorics(Kotor, 1998). 7 | fulltext EuDML | MR | Zbl
,[Yuz02] Small rational model of subspace complement, Trans. Amer. Math. Soc. 354 (2002), no. 5, 1921-1945. | DOI | MR | Zbl
,