Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{RUMI_2022_1_7_2_a4, author = {Cordelli, Alessandro}, title = {Teorema di {Pick} e {Serie} di {Farey}}, journal = {Matematica, cultura e societ\`a}, pages = {159--168}, publisher = {mathdoc}, volume = {Ser. 1, 7}, number = {2}, year = {2022}, zbl = {0836.01010}, mrnumber = {1365013}, language = {it}, url = {http://geodesic.mathdoc.fr/item/RUMI_2022_1_7_2_a4/} }
Cordelli, Alessandro. Teorema di Pick e Serie di Farey. Matematica, cultura e società, Série 1, Tome 7 (2022) no. 2, pp. 159-168. http://geodesic.mathdoc.fr/item/RUMI_2022_1_7_2_a4/
[1] Farey Series and Pick's Area Theorem The Mathematical Intelligencer, 17(4)(1995), 64-67 | DOI | MR | Zbl
- ,[2] Geometrisches zur Zahlentheorie, Sitzungber. Lotos, Naturwissen Zeitschrift, 19 (1899), 311-319
,[3] Triangulation and Pick's theorem, Math. Mag., 280 (1975), 61-69 | DOI | MR
- - ,[4] Ingenuity in Mathematics, New Mathematical Library, vol. 23, Mathematical Association of America, Washington DC, 1970, 27-31 | MR | Zbl
,[5] Lattice points and Pick's theorem, Math. Mag., 52 (1979), 232-235 | DOI | MR | Zbl
,[6] Pick's theorem revisited, The American Mathematical Monthly Vol. 92, No. 8, pp. 584-587 | DOI | MR | Zbl
,[7] An introduction to the Theory of Numbers, Oxford University Press, London,1954, cap. III | MR | Zbl
- ,[8] Farey Sequences, Ford Circles and Pick's Theorem, MAT Exam Expository Papers, University of Nebraska, Lincoln, 2006
,[9] From Euler's Formula to Pick's Formula Using an Edge Theorem, The American Mathematical Monthly, 81(6) (1974), 647-648 | DOI | MR | Zbl
,