Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{RUMI_2022_1_7_1_a2, author = {Buonomo, Bruno and Lacitignola, Deborah}, title = {L'epidemia di di {COVID-19} in {Italia:} indagini e risposte dai modelli compartimentali}, journal = {Matematica, cultura e societ\`a}, pages = {35--52}, publisher = {mathdoc}, volume = {Ser. 1, 7}, number = {1}, year = {2022}, zbl = {0798.92024}, mrnumber = {1224446}, language = {it}, url = {http://geodesic.mathdoc.fr/item/RUMI_2022_1_7_1_a2/} }
TY - JOUR AU - Buonomo, Bruno AU - Lacitignola, Deborah TI - L'epidemia di di COVID-19 in Italia: indagini e risposte dai modelli compartimentali JO - Matematica, cultura e società PY - 2022 SP - 35 EP - 52 VL - 7 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RUMI_2022_1_7_1_a2/ LA - it ID - RUMI_2022_1_7_1_a2 ER -
%0 Journal Article %A Buonomo, Bruno %A Lacitignola, Deborah %T L'epidemia di di COVID-19 in Italia: indagini e risposte dai modelli compartimentali %J Matematica, cultura e società %D 2022 %P 35-52 %V 7 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/RUMI_2022_1_7_1_a2/ %G it %F RUMI_2022_1_7_1_a2
Buonomo, Bruno; Lacitignola, Deborah. L'epidemia di di COVID-19 in Italia: indagini e risposte dai modelli compartimentali. Matematica, cultura e società, Série 1, Tome 7 (2022) no. 1, pp. 35-52. http://geodesic.mathdoc.fr/item/RUMI_2022_1_7_1_a2/
[1] ISS, Istituto Superiore di Sanita± Latest available data; 2020. (Visitato a ottobre 2021). https://www.epicentro.iss.it/en/coronavirus/.
[2] WHO, World Health Organization. WHO Coronavirus (COVID-19) Dashboard; 2021. (Visitato a ottobre 2021). https://covid19.who.int/.
[3] Governo Italiano Presidenza del Consiglio dei Ministri. Report Vaccini Anti COVID-19; 2021. (Visitato a ottobre 2021). https://www.governo.it/it/cscovid19/report-vaccini/.
[4] Effects of information induced behavioural changes during the COVID-19 lockdowns: the case of Italy. Royal Society open science. 2020; 7(10):201635.
, .[5] Infectious diseases of humans:dynamics and control. Oxford University Press; 1992.
, .[6] Mathematical structures of epidemic systems. vol. 88. Springer; 1993. | DOI | MR | Zbl
.[7] Modeling infectious diseases in humans and animals. Princeton University Press; 2011. | MR | Zbl
, .[8] An introduction to mathematical epidemiology. vol. 61. Springer; 2015. | DOI | MR | Zbl
.[9] A contribution to the mathematical theory of epidemics. Proceedings of the Royal Society of London Series A. 1927; 115(772):700-721. | Zbl
, .[10] Contributions to the mathematical theory of epidemics-I. 1927. Bulletin of Mathematical Biology. 1991; 53(1-2):33-55.
, .[11] Contributions to the mathematical theory of epidemics-II. The problem ofendemicity. Bulletin of Mathematical Biology. 1991;53(1-2):57-87.
, .[12] Contributions to the mathematical theory of epidemics-III. Further studies of theproblem of endemicity. Bulletin of Mathematical Biology. 1991; 53(1-2):89-118.
, .[13] Modelli epidemiologici e 50 vaccinazioni: da Bernoulli a oggi. Matematica, Cultura e Società - Rivista dell'Unione Matematica Italiana. 2018; 3(1):45-59. | fulltext bdim | fulltext EuDML | MR
, .[14] Cenni su teoria e utilizzo di modelli matematici per le epidemie. Matematica, Cultura e Società - Rivista dell'Unione Matematica Italiana. 2020; 5(1):5-15. | fulltext bdim
.[15] The mathematics of infectious diseases. SIAM review. 2000; 42(4):599-653. | DOI | MR | Zbl
.[16] An introduction to mathematical population dynamics: along the trail of Volterra and Lotka. vol. 79. Springer; 2015. | DOI | MR | Zbl
, .[17] On the definition and the computation of the basic reproduction ratio $R_0$ in models for infectious diseases in heterogeneous populations. Journal of Mathematical Biology. 1990; 28(4):365-382. | DOI | MR | Zbl
, , .[18] Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Mathematical Biosciences. 2002; 180(1-2):29-48. | DOI | MR | Zbl
, .[19] Mims' Medical Microbiology E-Book. Elsevier Health Sciences; 2018.
, , , .[20] Evolutionary entropy determines invasion success in emergent epidemics. PLoSONE. 2010; 5(9):e12951.
, .[21] Estimating the basic reproduction number for COVID-19 in Western Europe. PLoS ONE. 2021; 16(3):e0248731.
, , .[22] Estimating the reproductive number $R_0$ of SARS-CoV-2 in the United States and eight European countries and implications for vaccination. Journal of Theoretical Biology. 2021; 517:110621. | DOI | MR | Zbl
, , , .[23] Backward bifurcations in simple vaccination models. Journal of Mathematical Analysis and Applications. 2004; 298(2):418-31. | DOI | MR | Zbl
.[24] Modelling strategies for controlling SARS outbreaks. Proceedings of the Royal Society of London Series B: Biological Sciences. 2004; 271(1554):2223-2232.
, , , , , , et al.[25] Do asymptomatic carriers of SARS-COV-2 transmit the virus? The Lancet Regional Health-Europe. 2021; 4.
.[26] Spread and dynamics of the COVID19 epidemic in Italy: Effects of emergency containment measures. Proceedings of the National Academy of Sciences. 2020; 117(19):10484-10491.
, , , , , , et al.[27] A network model of Italy shows that intermittent regional strategies can alleviate the COVID-19 epidemic. Nature Communications. 2020; 11(1):1-9.
, , , , , , et al.[28] SIR-network model and its application to dengue fever. SIAM Journalon Applied Mathematics. 2015; 75(6):2581-2609. | DOI | MR | Zbl
, , .[29] Analysis and forecast of COVID-19 spreading in China, Italy and France. Chaos, Solitons &Fractals. 2020; 134:109761. | DOI | MR | Zbl
, .[30] Johns Hopkins University, Center for Systems Scienceand Engineering. COVID-19 dashboard; 2020. (Visitato aottobre 2021). https://coronavirus.jhu.edu.
[31] Monitoring Italian COVID19 spread by a forced SEIRD model. PLoS ONE. 2020; 15(8):e0237417.
, .[32] MANFREDI P, D'ONOFRIO A, editors. Modeling the Interplay Between Human Behavior and the Spread of Infectious Diseases. New York: Springer; 2013. | DOI | MR
[33] Statistical physics of vaccination. Physics Reports. 2016; 664:1-113. | DOI | MR | Zbl
, , , , , , et al.[34] Information-related changes in contact patterns may trigger oscillations in the endemic prevalence of infectious diseases. Journal of Theoretical Biology. 2009; 256(3):473-478. | DOI | MR | Zbl
, .[35] Vaccinating behaviour, information, and the dynamics of SIR vaccine preventable diseases. Theoretical Population Biology. 2007; 71(3):301-317. | Zbl
, , .[36] Optimal time profiles of public health intervention to shape voluntary vaccination for childhood diseases. Journal of Mathematical Biology. 2019; 78(4):1089-1113. | DOI | MR | Zbl
, , .[37] Oscillations and hysteresisin an epidemic model with information-dependent imperfect vaccination. Mathematics and Computers in Simulation. 2019; 162:97-114. | DOI | MR | Zbl
, .[38] SUIHTER: a new mathematical model for COVID-19. Application to the analysis of the second epidemic outbreak in Italy. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2021; 477(2253):20210027. | MR
, , , , , , et al.[39] Modelling the COVID-19 epidemic and implementation of population-wide interventions in Italy. Nature Medicine. 2020; 26:855-60.
, , , , , , et al.[40] ISTAT, Istituto Nazionale di Statistica. Impatto dell'epidemia Covid-19 sulla mortalità totale della popolazione residente; 2021. (Visitato ad agosto 2021). https://www.istat.it/it/archivio/254507. | DOI | MR
[41] Managing awareness can avoid hysteresis in disease spread: an application to Coronavirus Covid-19. Chaos Solitons & Fractals. 2021; 144:110739. | DOI | MR
, .[42] Using awareness to Z-control a SEIR model with overexposure. Insights on Covid-19 pandemic. Chaos Solitons & Fractals. 2021; 150:111063. | DOI | MR
, .[43] A simple SIR model with a large set of asymptomatic infectives. Mathematics in Engineering. 2021; 3(2):1-39. | DOI | MR | Zbl
.[44] Neural dynamics and Newton-Raphson iteration for non-linear optimization. Journal of Computational and Nonlinear Dynamics. 2014; 9(2):021016.
, .[45] On the Z-type control of backward bifurcations in epidemic models. Mathematical Biosciences. 2019; 315:108215. | DOI | MR | Zbl
, .[46] Association of the COVID-19 pandemic with Internet Search Volumes: A Google Trends TM Analysis. International Journal of Infectious Diseases. 2020; 95:192-197.
, , , , , .[47] Lessons from New Zealand's COVID-19 outbreak response. Lancet Public Health. 2020; 5(11):e569-570.
.[48] AIFA, Agenzia italiana del Farmaco. Vaccini COVID-19; 2021. (Visitato ad agosto 2021). https://www.aifa.gov.it/web/guest/vaccini-covid-19.
[49] Ministero della Salute. Vaccinazione anti-SARS-CoV-2/COVID-19, Piano Strategico, elementi di preparazione e di implementazione della strategia vaccinale.; 2020. (Visitatoad agosto 2021). http://www.salute.gov.it/imgs/C_17_pubblicazioni_2986_allegato.pdf.
[50] Modeling vaccination rollouts, SARS-CoV-2 variants and the requirement for non-pharmaceutical interventions in Italy. Nature Medicine. 2021; 27(6):993-998.
, , , , , , et al.[51] Nine challenges for deterministic epidemic models. Epidemics. 2015; 10:49-53.
, , , .[52] Continuous-time stochastic processes for the spread of COVID-19 disease simulated via a Monte Carlo approach and compariso nwith deterministic models. Journal of Mathematical Biology. 2021; 83(4):34. | DOI | MR | Zbl
, , .[53] Limits of compartmental models and new opportunities for machine learning: a case study to forecast the second wave of COVID-19 hospitalizations in Lombardy, Italy. Informatics. 2021; 8(3).
, , , , , .[54] On the reliability of predictions on Covid-19 dynamics: Asystematic and critical review of modelling techniques. Infectious Disease Modelling. 2021; 6:258-72.
, , , .