Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{RUMI_2021_1_6_3_a1, author = {Pareschi, Lorenzo and Toscani, Giuseppe}, title = {Dinamiche sociali ed equazioni alle derivate parziali in ambito epidemiologico}, journal = {Matematica, cultura e societ\`a}, pages = {215--230}, publisher = {mathdoc}, volume = {Ser. 1, 6}, number = {3}, year = {2021}, zbl = {07615909}, mrnumber = {4263205}, language = {it}, url = {http://geodesic.mathdoc.fr/item/RUMI_2021_1_6_3_a1/} }
TY - JOUR AU - Pareschi, Lorenzo AU - Toscani, Giuseppe TI - Dinamiche sociali ed equazioni alle derivate parziali in ambito epidemiologico JO - Matematica, cultura e società PY - 2021 SP - 215 EP - 230 VL - 6 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RUMI_2021_1_6_3_a1/ LA - it ID - RUMI_2021_1_6_3_a1 ER -
Pareschi, Lorenzo; Toscani, Giuseppe. Dinamiche sociali ed equazioni alle derivate parziali in ambito epidemiologico. Matematica, cultura e società, Série 1, Tome 6 (2021) no. 3, pp. 215-230. http://geodesic.mathdoc.fr/item/RUMI_2021_1_6_3_a1/
[1] Kinetic modelling of epidemic dynamics: social contacts, control with uncertain data, and multiscale spatial dynamics. In corso di stampa su: Predicting Pandemics in a Globally Connected World, Vol. 1, N. Bellomo and M. Chaplain Editors, Springer Nature (2021). | Zbl
, , , , , , .[2] Control with uncertain data of socially structured compartmental epidemic models. J. Math. Biol., 82:63 (2021). | DOI | MR | Zbl
, , .[3] Modelling lockdown measures in epidemic outbreaks using selective socioeconomic containment with uncertainty. Math. Biosci. Eng., 18(6):7161-7190 (2021). | DOI | MR | Zbl
, , .[4] A multiscale model of virus pandemic: Heterogeneous interactive entities in a globally connected world. Math. Mod. Meth. Appl. Scie. 30 (8): 1591-1651, (2020). | DOI | MR | Zbl
, , , , , , , , .[5] The French Connection: The First Large Population-Based Contact Survey in France Relevant for the Spread of Infectious Diseases. PLOS ONE 10 (7): e0133203, (2015).
, , , , , , , , , .[6] Spatial spread of COVID-19 outbreak in Italy using multiscale kinetic transport equations with uncertainty. Math. Biosci. Eng., 18(5):7028-7059 (2021). | DOI | MR | Zbl
, , , .[7] Hyperbolic models for the spread of epidemics on networks: kinetic description and numerical methods, ESAIM Math. Model. Numer. Anal. 55(2):381-407 (2021). | DOI | MR | Zbl
, .[8] Hyperbolic compartmental models for epidemic spread on networks with uncertain data: application to the emergence of COVID-19 in Italy. Math. Mod. Meth. App. Scie., in corso di stampa (2021). | DOI | MR | Zbl
, .[9] Modeling and simulating the spatial spread of an epidemic through multiscale kinetic transport equations. Math. Mod. Meth. App. Scie., 31(6):1059-1097 (2021). | DOI | MR | Zbl
, , .[10] Time optimal control strategies in SIR epidemic models. Math. Biosci., 292:86-96, (2017). | DOI | MR | Zbl
, , , ,[11] A mathematical model reveals the influence of population heterogeneity on herd immunity to SARS-CoV-2. Science, 369:6505, (2020). | DOI | MR | Zbl
, , .[12] Effects of information induced behavioural changes during the COVID-19 lockdowns: The case of Italy: COVID-19 lockdowns and behavioral change. R. Soc. Open Sci., 7:201635 (2020).
, .[13] A generalization of the Kermack McKendrick deterministic epidemic model. Math. Biosci., 42(1): 43-61, (1978). | DOI | MR | Zbl
, .[14] The Boltzmann Equation and its Applications. Springer Series in Applied Mathematical Sciences, vol. 67 Springer-Verlag, New York, NY, (1988). | DOI | MR | Zbl
.[15] An age and space structured SIR model describing the COVID-19 pandemic. J. Math. Ind., 10(1):22 (2020). | DOI | MR | Zbl
, , , .[16] Multiscale Modeling of Pedestrian Dynamics. Springer series in Modelling Simulation & Applications, vol. 12, (2014). | DOI | MR | Zbl
, , .[17] A SIR-like kinetic model tracking individuals' viral load. Preprint arXiv:2106.14480, (2021). | DOI | MR | Zbl
, , .[18] Wealth distribution under the spread of infectious diseases. Phys. Rev. E, 102:022303, (2020). | DOI | MR
, , , .[19] Kinetic models for epidemic dynamics with social heterogeneity. J. Math. Bio., 83:4, (2021). | DOI | MR | Zbl
, , , .[20] Spread and dynamics of the COVID-19 epidemic in Italy: Effects of emergency containment measures. PNAS, 117(19): 10484-10491, (2020).
, , , , , , .[21] Modelling the COVID-19 epidemic and implementation of populationwide interventions in Italy. Nat. Med., 26:855-860, (2020).
, , , , , , .[22] Delay differential equations for the spatially-resolved simulation of epidemics with specific application to COVID-19. Math. Meth. in Appl. Sci., in corso di stampa, (2021) | DOI | MR
, , .[23] The mathematics of infectious diseases. SIAM Review, 42(4): 599-653, (2000). | DOI | MR | Zbl
.[24] Predictive Mathematical Models of the COVID-19 Pandemic. Underlying Principles and Value of Projections. JAMA 323(19):1893-1894, (2020).
, , .[25] A Contribution to the Mathematical Theory of Epidemics. Proc. Roy. Soc. Lond. A, 115:700-721, (1927). | Zbl
, .[26] A viral load-based model for epidemic spread on spatial networks. Math. Biosci. Eng., 18(5):5635-5663, (2021). | DOI | MR | Zbl
, .[27] G. NALDI, L. PARESCHI, G. TOSCANI eds.. Mathematical modeling of collective behavior in socio-economic and life sciences, Birkhauser, Boston (2010). | DOI | MR | Zbl
[28] Interacting Multiagent Systems. Kinetic Equations & Monte Carlo Methods, Oxford University Press, Oxford (2013). | Zbl
, .[29] Traffic Flow on Networks. American Institute of Mathematical Sciences (2006). | MR | Zbl
, .[30] Projecting social contact matrices in 152 countries using contact surveys and demographic data. PLoS ONE, 13(9):e1005697, (2017).
, , .[31] Cenni su teoria e utilizzo di modelli matematici per le epidemie. Matematica, Cultura e Società - Rivista dell'Unione Matematica Italiana, Serie I, 5(1): 5-15, (2020). | fulltext bdim
.[32] A kinetic model for epidemic spread. MEMOCS, 8:3, (2020). | DOI | MR | Zbl
, .[33] Poverty, inequality and the distribution of income in the Group of 20, Discussion Paper #:0203-10, Department of Economics Columbia University, New York, (2002).
, .[34] Diffusion-reaction compartmental models formulated in a continuum mechanics framework: application to COVID-19, mathematical analysis, and numerical study. Comput. Mech., 66:1131-1152, (2020). | DOI | MR | Zbl
, , , , , , , , , .[35] Social contacts, epidemic spreading and health system. Mathematical modeling and applications to COVID-19 infection. Math. Biosci. Eng., 18 (4):3384-3403, (2021). | DOI | MR | Zbl
, , , , , , , , .[36] A data-driven epidemic model with social structure for understanding the COVID-19 infection on a heavily affected Italian Province. Math. Mod. Meth. Appl. Sci., in corso di stampa, (2021). | DOI | MR | Zbl
, , , , , , , .