Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{RUMI_2020_1_5_3_a2, author = {Tarantello, Gabriella}, title = {Louis {Nirenberg} in ricordo}, journal = {Matematica, cultura e societ\`a}, pages = {187--191}, publisher = {mathdoc}, volume = {Ser. 1, 5}, number = {3}, year = {2020}, zbl = {0512.53044}, mrnumber = {681859}, language = {en}, url = {http://geodesic.mathdoc.fr/item/RUMI_2020_1_5_3_a2/} }
Tarantello, Gabriella. Louis Nirenberg in ricordo. Matematica, cultura e società, Série 1, Tome 5 (2020) no. 3, pp. 187-191. http://geodesic.mathdoc.fr/item/RUMI_2020_1_5_3_a2/
[A] Nonlinear analysis on manifolds. Monge-Ampère equations, vol. 252, Springer Verlag, New York, 1982. | DOI | MR | Zbl
,[B] Critical points at infinity in some variational problems, Pitman, Research Notes in Mathematics Series, Vol. 182, 1989. | MR | Zbl
,[BC] On a nonlinear elliptic equation involving the critical Sobolev exponent: The effect of the topology of the domain, Comm. Pure Appl. Math. 41 (1988), 253-294. | DOI | MR | Zbl
, ,[BN] On the method of moving planes and the sliding method, Bol. Soc. Brasil. Mat. (N.S.) 22 (1991), 1-37. | DOI | MR | Zbl
, ,[BM] Uniform estimates and blow-up behaviour for solutions of $\Delta u = V(x)e^u$ in two dimensions, Comm. in Partial Differential Equations 16 (1991), 1223-1253. | DOI | MR | Zbl
, ,[BN] Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math. 36 (1983), 437-477. | DOI | MR | Zbl
, ,[CKN1] Partial regularity of suitable weak solutions of the Navier-Stokes equations, Comm. Pure Appl. Math. 35 (1982), 771-831. | DOI | MR | Zbl
, , ,[CKN2] First order interpolation inequalities with weights, Compositio Math. 53 (1984), 259-275. | fulltext EuDML | MR | Zbl
, , ,[CW] On the Caffarelli-Kohn-Nirenberg inequalities: sharp constants, existence (non-existence) and symmetry of extremal functions, Comm. Pure Appl. Math. 54 (2001), 229-258. | DOI | MR | Zbl
, ,[CY1] Prescribing Gaussian curvature on $S^2$, Acta Math. 159 (1987), 215-259. | DOI | MR | Zbl
, ,[CY2] Conformal deformation of metrics on $S^2$, J. Diff. Geom. 27 (1988), 259-296. | MR | Zbl
, ,[CGY] S-Equations of Monge-Ampere type in the conformal geometry and four-manifolds of positive Ricci curvature, Ann. of Math. 155 (2002), 711-789. | DOI | MR
, , ,[CL] Topological degree for a mean field equation on Riemann surfaces, Comm. Pure Appl. Math. 56 (2003), 1667-1727. | DOI | MR | Zbl
, ,[DEL1] Symmetry and Symmetry Breaking: Rigidity and Flows in Elliptic PDES, Proc. Int. Cong. Math (2018), 2279-2304. | MR | Zbl
, , ,[DEL2] Rigidity versus symmetry breaking via nonlinear flows on Cylinder and Eucledian spaces, Invent. Math. (2016), 397-440. | DOI | MR | Zbl
, , ,[D] On the Work of Louis Nirenberg, Notices Amer. Math. Soc. 58 (2011), 469-472. | MR | Zbl
,[GNN] Symmetry and related properties via the maximum principle, Comm. Math. Phys. 68 (1979), 209-243. | MR | Zbl
, , ,[KW] Existence and conformal deformation of metrics with prescribed Gaussian and scalar curvature, Ann. of Math. 101 (1975), 317-331. | DOI | MR | Zbl
, ,[L] The work of Louis Nirenberg, Proceedings of the International Congress of Mathematics (2010) Vol. I, 127-137, Hindustan Book Agency. | MR | Zbl
,[LYZ] A priori estimates for Toda systems I: the Lie Algebras of $A_n$, $B_n$, $C_n$ and $G_2$, J. Diff. Geom. 114 (2020), 337-391 | DOI | MR | Zbl
, , ,[M] On a nonlinear problem in differential geometry, Dynamical Systems Symposium (M. Peixoto, ed.) Academic Press, NY, 1973, 273-280. | MR
,[R] Exploring the unknown: the work of the work of Louis Nirenberg on partial differential equations, Notices Amer. Math. Soc. 63 (2016), no. 2, 120-125. | MR | Zbl
,[S1] Conformal deformation of a Riemannian metric to constant scalar curvature, J. Diff. Geom. 20 (1984), 479-495. | MR | Zbl
,[S2] A compactness theorem for the Yamabe problem, J. Diff. Geom. 81 (2009), 143-196. | MR | Zbl
, , & ,[SU] The existence of minimal immersions of 2-spheres, Ann. of Math. 113 (1981), 1-24. | DOI | MR | Zbl
, ,[T]Self-dual gauge field vortices: an analytical approach, Progress in Nonlinear Differential Equations and their Applications, vol. 72, Birkhauser Boston, Inc., Boston, MA, 2008. | DOI | MR | Zbl
,