Louis Nirenberg in ricordo
Matematica, cultura e società, Série 1, Tome 5 (2020) no. 3, pp. 187-191.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

@article{RUMI_2020_1_5_3_a2,
     author = {Tarantello, Gabriella},
     title = {Louis {Nirenberg} in ricordo},
     journal = {Matematica, cultura e societ\`a},
     pages = {187--191},
     publisher = {mathdoc},
     volume = {Ser. 1, 5},
     number = {3},
     year = {2020},
     zbl = {0512.53044},
     mrnumber = {681859},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RUMI_2020_1_5_3_a2/}
}
TY  - JOUR
AU  - Tarantello, Gabriella
TI  - Louis Nirenberg in ricordo
JO  - Matematica, cultura e società
PY  - 2020
SP  - 187
EP  - 191
VL  - 5
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RUMI_2020_1_5_3_a2/
LA  - en
ID  - RUMI_2020_1_5_3_a2
ER  - 
%0 Journal Article
%A Tarantello, Gabriella
%T Louis Nirenberg in ricordo
%J Matematica, cultura e società
%D 2020
%P 187-191
%V 5
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RUMI_2020_1_5_3_a2/
%G en
%F RUMI_2020_1_5_3_a2
Tarantello, Gabriella. Louis Nirenberg in ricordo. Matematica, cultura e società, Série 1, Tome 5 (2020) no. 3, pp. 187-191. http://geodesic.mathdoc.fr/item/RUMI_2020_1_5_3_a2/

[A] T. Aubin, Nonlinear analysis on manifolds. Monge-Ampère equations, vol. 252, Springer Verlag, New York, 1982. | DOI | MR | Zbl

[B] A. Bahri, Critical points at infinity in some variational problems, Pitman, Research Notes in Mathematics Series, Vol. 182, 1989. | MR | Zbl

[BC] A. Bahri, J. Coron, On a nonlinear elliptic equation involving the critical Sobolev exponent: The effect of the topology of the domain, Comm. Pure Appl. Math. 41 (1988), 253-294. | DOI | MR | Zbl

[BN] H. Berestycki, L. Nirenberg, On the method of moving planes and the sliding method, Bol. Soc. Brasil. Mat. (N.S.) 22 (1991), 1-37. | DOI | MR | Zbl

[BM] H. Brezis, F. Merle, Uniform estimates and blow-up behaviour for solutions of $\Delta u = V(x)e^u$ in two dimensions, Comm. in Partial Differential Equations 16 (1991), 1223-1253. | DOI | MR | Zbl

[BN] H. Brezis, L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math. 36 (1983), 437-477. | DOI | MR | Zbl

[CKN1] L. Caffarelli, R. Kohn, L. Nirenberg, Partial regularity of suitable weak solutions of the Navier-Stokes equations, Comm. Pure Appl. Math. 35 (1982), 771-831. | DOI | MR | Zbl

[CKN2] L. Caffarelli, R. Kohn, L. Nirenberg, First order interpolation inequalities with weights, Compositio Math. 53 (1984), 259-275. | fulltext EuDML | MR | Zbl

[CW] F. Catrina, Z.Q. Wang, On the Caffarelli-Kohn-Nirenberg inequalities: sharp constants, existence (non-existence) and symmetry of extremal functions, Comm. Pure Appl. Math. 54 (2001), 229-258. | DOI | MR | Zbl

[CY1] S. Y. A. Chang, P. C. Yang, Prescribing Gaussian curvature on $S^2$, Acta Math. 159 (1987), 215-259. | DOI | MR | Zbl

[CY2] S.-Y. A. Chang, P. Yang, Conformal deformation of metrics on $S^2$, J. Diff. Geom. 27 (1988), 259-296. | MR | Zbl

[CGY] S-Y.A. Chang, M. Gursky, P.C. Yang, Equations of Monge-Ampere type in the conformal geometry and four-manifolds of positive Ricci curvature, Ann. of Math. 155 (2002), 711-789. | DOI | MR

[CL] C. C. Chen, C. S. Lin, Topological degree for a mean field equation on Riemann surfaces, Comm. Pure Appl. Math. 56 (2003), 1667-1727. | DOI | MR | Zbl

[DEL1] J. Dolbeault, M.J. Esteban, M. Loss, Symmetry and Symmetry Breaking: Rigidity and Flows in Elliptic PDES, Proc. Int. Cong. Math (2018), 2279-2304. | MR | Zbl

[DEL2] J. Dolbeault, M.J. Esteban, M. Loss, Rigidity versus symmetry breaking via nonlinear flows on Cylinder and Eucledian spaces, Invent. Math. (2016), 397-440. | DOI | MR | Zbl

[D] S. Donaldson, On the Work of Louis Nirenberg, Notices Amer. Math. Soc. 58 (2011), 469-472. | MR | Zbl

[GNN] B. Gidas, W. M. Ni, L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys. 68 (1979), 209-243. | MR | Zbl

[KW] J. Kazdan, F. Warner, Existence and conformal deformation of metrics with prescribed Gaussian and scalar curvature, Ann. of Math. 101 (1975), 317-331. | DOI | MR | Zbl

[L] Y. Y. Li, The work of Louis Nirenberg, Proceedings of the International Congress of Mathematics (2010) Vol. I, 127-137, Hindustan Book Agency. | MR | Zbl

[LYZ] C.S. Lin, W. Yang, X. Zhong, A priori estimates for Toda systems I: the Lie Algebras of $A_n$, $B_n$, $C_n$ and $G_2$, J. Diff. Geom. 114 (2020), 337-391 | DOI | MR | Zbl

[M] J. Moser, On a nonlinear problem in differential geometry, Dynamical Systems Symposium (M. Peixoto, ed.) Academic Press, NY, 1973, 273-280. | MR

[R] T. Rivière, Exploring the unknown: the work of the work of Louis Nirenberg on partial differential equations, Notices Amer. Math. Soc. 63 (2016), no. 2, 120-125. | MR | Zbl

[S1] R. Schoen, Conformal deformation of a Riemannian metric to constant scalar curvature, J. Diff. Geom. 20 (1984), 479-495. | MR | Zbl

[S2] M.A. Khuri, F.C. Marques, & R.M. Schoen, A compactness theorem for the Yamabe problem, J. Diff. Geom. 81 (2009), 143-196. | MR | Zbl

[SU] J. Sacks, K. Uhlenbeck, The existence of minimal immersions of 2-spheres, Ann. of Math. 113 (1981), 1-24. | DOI | MR | Zbl

[T]G. Tarantello, Self-dual gauge field vortices: an analytical approach, Progress in Nonlinear Differential Equations and their Applications, vol. 72, Birkhauser Boston, Inc., Boston, MA, 2008. | DOI | MR | Zbl