Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{RUMI_2020_1_5_2_a2, author = {Naldi, Giovanni}, title = {Possiamo sentire la forma di un grafo? {Un} grafo pu\`o farci sentire la forma dei dati?}, journal = {Matematica, cultura e societ\`a}, pages = {111--134}, publisher = {mathdoc}, volume = {Ser. 1, 5}, number = {2}, year = {2020}, zbl = {1423.92009}, mrnumber = {3951472}, language = {it}, url = {http://geodesic.mathdoc.fr/item/RUMI_2020_1_5_2_a2/} }
TY - JOUR AU - Naldi, Giovanni TI - Possiamo sentire la forma di un grafo? Un grafo può farci sentire la forma dei dati? JO - Matematica, cultura e società PY - 2020 SP - 111 EP - 134 VL - 5 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RUMI_2020_1_5_2_a2/ LA - it ID - RUMI_2020_1_5_2_a2 ER -
Naldi, Giovanni. Possiamo sentire la forma di un grafo? Un grafo può farci sentire la forma dei dati?. Matematica, cultura e società, Série 1, Tome 5 (2020) no. 2, pp. 111-134. http://geodesic.mathdoc.fr/item/RUMI_2020_1_5_2_a2/
[1] From dynamics to links: a sparse reconstruction of the topology of a neural network, Commun. Appl. Ind. Math., Vol. 10 N. 2 2019, 2-11 | DOI | MR | Zbl
, , , ,[2] Ranking Hubs and Authorities Using Matrix Functions, Linear Algebra and its Applications, 438 2013, 2447- 2474. | DOI | MR | Zbl
, , ,[3] Introduction to Quantum Graphs, AMS Mathematical Surveys and Monographs. Providence RI, 2013. | DOI | MR | Zbl
,[4] Graph Theory 1736-1936. Oxford University Press, New York, 1998. | MR
, ,[5] Random Walks and Diffusions on Graphs and Databases - An Introduction. Springer-Verlag Berlin Heidelberg, 2011. | DOI | MR | Zbl
,[6] Mathematical study of a nonlinear neuron model with active dendrites, AIMS Mathematics 4 (3), 831-846. | DOI | MR
, ,[7] Spectral Graph Theory. AMS CBMS Regional Conference Series in Mathematics Vol. 92, 1997. | MR
[8] Introduzione agli algoritmi e strutture dati. McGraw-Hill Education, 2010.
, , ,[9] An Introduction to the Theory of Graph Spectra, London Mathematical Society, Cambridge University Press, 2010. | MR | Zbl
, , ,[10] Which graphs are determined by their spectrum?, Linear Algebra Appl. 373 2003, 241-272. | DOI | MR | Zbl
, ,[11] Developments on spectral characterizations of graphs, Discrete Mathematics 309 2009, 576-586. | DOI | MR | Zbl
, ,[12] Graph Theory. Springer-Verlag, Heidelberg Graduate Texts in Mathematics, Volume 173, 2016.
,[13] The Physics of Communicability in Complex Networks, Physics Reports, 514 2012, 89-119. | DOI | MR
, , ,[14] Solutio problematis ad geometriam situs pertinentis, Commentarii academiae scientiarum Petropolitanae 8, 1741, 128-140.
,[15] Elementary Applied Topology, ed. 1.0, Createspace, 2014. | Zbl
[16] Isospectral plane domains and surfaces via Riemannian orbifolds, Invent. Math., Vol. 110 n. 1, 1992, 1-22 | fulltext EuDML | DOI | MR | Zbl
, , ,[17] Discrete Calculus, Applied Analysis on Graphs for Computational Science, Springer-Verlag London, 2010. | DOI | MR
,[18] Can one hear the shape of a graph?, J. Phys. A: Math. Gen. Vol. 34 2001, 6061. | DOI | MR | Zbl
, ,[19] An r-dimensional quadratic placement algorithm. Management Science, 17 1970, 219-229. | Zbl
,[20] Inverse problems for partial differential equations. Springer-Verlag, New York, 1998. | DOI | MR | Zbl
[21] Second term of the spectral asymptotic expansion of the Laplace-Beltrami operator on manifolds with boundary. Funct. Anal. Appl., 14(2) (1980), 98-106. | MR | Zbl
,[22] Accurate spectral asymptotics for elliptic operators that act in vector bundles. Funct. Anal. Appl., 16(2) (1982), 101-108. | MR
,[23] Can one hear the shape of a drum?, Amer. Math. Monthly 73 (1966), 1-23. | DOI | MR | Zbl
,[24] Lineare Relationen Zwischen quadratischer Formen, Math. Ann., 168 (1967), 31-39. | fulltext EuDML | DOI | MR | Zbl
,[25] Inverse Spectral Problem for Quantum Graphs, J. Phys. A: Math. Gen. Vol. 38 2005, 4901-15. | DOI | MR | Zbl
, ,[26] Dendritic computation. Annu. Rev. Neurosci. Vol. 28 2005, 503-532.
, ,[27] Eigenvalues of the Laplace operator of certain manifold, Proc. Nat. Acad. Sci. U.S.A., 51 (1964), 542. | DOI | MR | Zbl
,[28] I Grafi e le loro applicazioni. Zanichelli, Bologna, 1979. | MR
[29] Propriétés asymptotiques des fonctions fondamentales du probléme des vibrations dans un corps élastique, Arkiv f. Mat. Astron. o. Fysik, 26 (1939), 1-9. | MR | Zbl
,[30] Graphs, vectors, and matrices, Bull. Amer. Math. Soc. (N.S.), Vol. 54 n. 1, 2017, 45-61. | DOI | MR | Zbl
,[31] Riemannian coverings and isospectral manifolds, Ann. of Math. (2), Vol. 121 n. 1, 1985, 169-186. | DOI | MR | Zbl
,[32] How to draw a graph, Proc. London Math. Soc. (3) 13 1963, 743-767. | DOI | MR | Zbl
,[33] Varietés riemanniennes isospectrales et non isometriques, Ann. of Math., 91 (1980), 21-32. | Zbl
,[34] Über die asymptotische verteilung der Eigenwerte, Gott Nach. (1911), 110-117. | fulltext EuDML | Zbl
,[35] Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller differentialgleichungen, Math. Ann., 71 (1912), 441-479. | fulltext EuDML | DOI | MR | Zbl
,[36] Spectral determination of analytic bi-axisymmetric plane domains, Geom. Funct. Anal., Vol. 10 n.3, 2000, 628-677. | DOI | MR | Zbl
,[37] Eigenfunctions of the Laplacian on a Riemannian manifold. CBMS Regional Conference Series in Mathematics, Vol. 125, AMS, Providence, 2017. | MR | Zbl
,