The Boltzmann legacy revisited:kinetic models of social interactions
Matematica, cultura e società, Série 1, Tome 5 (2020) no. 2, pp. 93-109.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

The application of classical methods of statistical mechanics, originally developed by Ludwig Boltzmann in gas dynamics, to the description of social phenomena is a success story that we try to outline in this paper. On one hand, it is nowadays a flourishing research line, which is more and more permeating different contexts such as the Econophysics, Sociophysics, Biomathematics, Transportation Engineering to name just a few of them. On the other hand, it is a fascinating mathematical challenge, because it requires the interplay of various complementary expertises: modelling, model analysis, numerics. In this paper, we try to give a taste of all of this using the social phenomenon of opinion formation as a motivating example.
L'applicazione dei metodi classici della meccanica statistica, sviluppati originariamente da Ludwig Boltzmann per la gasdinamica, alla descrizione di fenomeni sociali è una storia di successo che in questo articolo cerchiamo di tratteggiare. Da un lato essa costituisce attualmente una fiorente linea di ricerca, che sta sempre più permeando contesti diversi tra loro quali l'econofisica, la sociofisica, la biomatematica, l'ingegneria dei trasporti per non citare che alcuni esempi. Dall'altro è anche una sfida matematica affascinante, perché richiede l'interazione di svariate competenze complementari: la modellistica, l'analisi dei modelli, la numerica. In questo articolo cerchiamo di dare un assaggio di tutto ciò usando come esempio motivante la formazione delle opinioni.
@article{RUMI_2020_1_5_2_a1,
     author = {Fraia, Martina and Tosin, Andrea},
     title = {The {Boltzmann} legacy revisited:kinetic models of social interactions},
     journal = {Matematica, cultura e societ\`a},
     pages = {93--109},
     publisher = {mathdoc},
     volume = {Ser. 1, 5},
     number = {2},
     year = {2020},
     zbl = {1325.49001},
     mrnumber = {3351435},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RUMI_2020_1_5_2_a1/}
}
TY  - JOUR
AU  - Fraia, Martina
AU  - Tosin, Andrea
TI  - The Boltzmann legacy revisited:kinetic models of social interactions
JO  - Matematica, cultura e società
PY  - 2020
SP  - 93
EP  - 109
VL  - 5
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RUMI_2020_1_5_2_a1/
LA  - en
ID  - RUMI_2020_1_5_2_a1
ER  - 
%0 Journal Article
%A Fraia, Martina
%A Tosin, Andrea
%T The Boltzmann legacy revisited:kinetic models of social interactions
%J Matematica, cultura e società
%D 2020
%P 93-109
%V 5
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RUMI_2020_1_5_2_a1/
%G en
%F RUMI_2020_1_5_2_a1
Fraia, Martina; Tosin, Andrea. The Boltzmann legacy revisited:kinetic models of social interactions. Matematica, cultura e società, Série 1, Tome 5 (2020) no. 2, pp. 93-109. http://geodesic.mathdoc.fr/item/RUMI_2020_1_5_2_a1/

[1] G. Albi, M. Herty, and L. Pareschi. Kinetic description of optimal control problems and application to opinion consensus. Commun. Math. Sci., 13(6):1407-1429, 2015. | DOI | MR | Zbl

[2] G. Albi, L. Pareschi, and M. Zanella. Boltzmann-type control of opinion consensus through leaders. Phil. Trans. R. Soc. A, 372(2028):20140138/1-18, 2014. | DOI | MR | Zbl

[3] E. Ben-Naim. Opinion dynamics: rise and fall of political parties. Europhys. Lett., 69(5):671-677, 2005.

[4] M. L. Bertotti and M. Delitala. On a discrete generalized kinetic approach for modelling persuader's influencein opinion formation processes. Math. Comput. Modelling, 48(7-8):1107-1121, 2008. | DOI | MR | Zbl

[5] A. V. Bobylev, M. Bisi, M. Groppi, G. Spiga, and I. F. Potapenko. A general consistent BGK model for gas mixtures. Kinet. Relat. Models, 11(6):1377-1393, 2018. | DOI | MR | Zbl

[6] A. V. Bobylev and K. Nanbu. Theory of collision algorithms for gases and plasmas based on the Boltzmann equation and the Landau-Fokker-Planck equation. Phys. Rev. E, 61(4):4576-4586, 2000.

[7] L. Boudin and F. Salvarani. Modelling opinion formation by means of kinetic equations. In G. NALDI, L. PARESCHI, and G. TOSCANI, editors, Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences, Modeling and Simulation in Science, Engineering and Technology, pages 245-270. Birkhäuser, Boston, 2010. | DOI | MR | Zbl

[8] G. E. P. Box. Science and statistics. J. Amer. Statist. Assoc., 71(356):791-799, 1976. | MR | Zbl

[9] G. E. P. Box. Robustness in the strategy of scientific model building. In Robustness in Statistics, pages 201-236. Academic Press, 1979.

[10] A. Bressan. Notes on the Boltzmann equation. Lecture notes for a summer course given at SISSA, Trieste (Italy), 2005.

[11] C. Cercignani. Ludwig Boltzmann: The Man Who Trusted Atoms. Oxford University Press, 2000. | MR

[12] S. Cordier, L. Pareschi, and C. Piatecki. Mesoscopic modelling of financial markets. J. Stat. Phys., 134(1):161-184, 2009. | DOI | MR | Zbl

[13] S. Cordier, L. Pareschi, and G. Toscani. On a kinetic model for a simple market economy. J. Stat. Phys., 120(1):253-277, 2005. | DOI | MR | Zbl

[14] B. Düring, P. Markowich, J.-F. Pietschmann, and M.-T. Wolfram. Boltzmann and Fokker Planck equations modelling opinion formation in the presence of strong leaders. Proc. R. Soc. A, 465(2112):3687-3708, 2009. | DOI | MR | Zbl

[15] B. Düring, L. Pareschi, and G. Toscani. Kinetic models for optimal control of wealth inequalities. Eur. Phys. J. B, 91:265/1-12, 2018. | DOI | MR

[16] E. Ising. Beitrag zur Theorie des Ferromagnetismus. Z. Physik, 31:253-258, 1925. | Zbl

[17] R. D. James, A. Nota, and J. J. L. Velázquez. Long-time asymptotics for homoenergetic solutions of the Boltzmann equation: collision-dominated case. J. Nonlin. Sci., 29(5):1943-1973, 2019. | DOI | MR | Zbl

[18] M. A. Nowak and C. R. M. Bangham. Population dynamics of immune responses to persistent viruses. Science, 272(5258):74-79, 1996.

[19] R. Ochrombel. Simulation of Sznajd sociophysics model with convincing single opinions. Internat. J. Modern Phys. C, 12(7):1091, 2001.

[20] L. Pareschi. Hybrid multiscale methods for hyperbolic and kinetic problems. ESAIM: Proc., 15:87-120, 2005. | MR | Zbl

[21] L. Pareschi and G. Russo. An introduction to Monte Carlo method for the Boltzmann equation. ESAIM: Proc., 10:35-75, 2001. | DOI | MR | Zbl

[22] L. Pareschi and G. Toscani. Interacting Multiagent Systems: Kinetic equations and Monte Carlo methods. Oxford University Press, 2013. | Zbl

[23] M. Pérez-Llanos, J. P. Pinasco, N. Saintier, and A. Silva. Opinion formation models with heterogeneous persuasion and zealotry. SIAM J. Math. Anal., 50(5):4812-4837, 2018. | DOI | MR | Zbl

[24] I. Prigogine. A Boltzmann-like approach to the statistical theory of traffic flow. In R. Herman, editor, Theory of traffic flow, pages 158-164, Amsterdam, 1961. Elsevier. | MR

[25] I. Prigogine and F. C. Andrews. A Boltzmann-like approach for traffic flow. Operations Res., 8(6):789-797, 1960. | DOI | MR | Zbl

[26] I. Prigogine and R. Herman. Kinetic theory of vehicular traffic. American Elsevier Publishing Co., New York, 1971. | Zbl

[27] M. Pulvirenti and S. Simonella. The Boltzmann-Grad limit of a hard sphere system: analysis of the correlation error. Invent. Math., 207(3):1135-1237, 2017. | DOI | MR | Zbl

[28] F. Slanina. Inelastically scattering particles and wealth distribution in an open economy. Phys. Rev. E, 69(4):046102/1-7, 2004.

[29] F. Slanina and H. Lavička. Analytical results for the Sznajd model of opinion formation. Eur. Phys. J. B, 35:279-288, 2003.

[30] K. Sznajd-Weron and J. Sznajd. Opinion evolution in closed community. Internat. J. Modern Phys. C, 11(6):1157-1165, 2000.

[31] G. Toscani. Kinetic models of opinion formation. Commun. Math. Sci., 4(3):481-496, 2006. | MR | Zbl

[32] G. Toscani. Sulle code di potenza di Pareto. Mat. Cult. Soc. Riv. Unione Mat. Ital. (I), 1(1):21-30, 2016. | fulltext bdim | fulltext EuDML | MR | Zbl

[33] G. Toscani, A. Tosin, and M. Zanella. Multiple-interaction kinetic modeling of a virtual-item gambling economy. Phys. Rev. E, 100(1):012308/1-16, 2019.

[34] G. Toscani, A. Tosin, and M. Zanella. Kinetic modelling of multiple interactions in socio-economic systems. Netw. Heterog. Media, 15(3) 2020. To appear (preprint doi:10.13140/RG.2.2.25753.77929). | DOI | MR | Zbl

[35] A. Tosin and M. Zanella. Kinetic-controlled hydrodynamics for traffic models with driver-assist vehicles. Multiscale Model. Simul., 17(2):716-749, 2019. | DOI | MR | Zbl

[36] A. Tosin and M. Zanella. Uncertainty damping in kinetic traffic models by driver-assist controls. Math. Control Relat. Fields, 2020. To appear (preprint doi:10.13140/ RG.2.2.35871.41124). | DOI | MR | Zbl

[37] C. Villani. On a new class of weak solutions to the spatially homogeneous Boltzmann and Landau equations. Arch. Ration. Mech. Anal., 143(3):273-307, 1998. | DOI | MR | Zbl

[38] C. Villani. A review of mathematical topics in collisional kinetic theory. In S. Friedlander and D. Serre, editors, Handbook of Mathematical Fluid Dynamics, volume I, chapter 2, pages 71-305. Elsevier, 2002. | DOI | MR | Zbl