Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{RUMI_2020_1_5_2_a1, author = {Fraia, Martina and Tosin, Andrea}, title = {The {Boltzmann} legacy revisited:kinetic models of social interactions}, journal = {Matematica, cultura e societ\`a}, pages = {93--109}, publisher = {mathdoc}, volume = {Ser. 1, 5}, number = {2}, year = {2020}, zbl = {1325.49001}, mrnumber = {3351435}, language = {en}, url = {http://geodesic.mathdoc.fr/item/RUMI_2020_1_5_2_a1/} }
TY - JOUR AU - Fraia, Martina AU - Tosin, Andrea TI - The Boltzmann legacy revisited:kinetic models of social interactions JO - Matematica, cultura e società PY - 2020 SP - 93 EP - 109 VL - 5 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RUMI_2020_1_5_2_a1/ LA - en ID - RUMI_2020_1_5_2_a1 ER -
Fraia, Martina; Tosin, Andrea. The Boltzmann legacy revisited:kinetic models of social interactions. Matematica, cultura e società, Série 1, Tome 5 (2020) no. 2, pp. 93-109. http://geodesic.mathdoc.fr/item/RUMI_2020_1_5_2_a1/
[1] Kinetic description of optimal control problems and application to opinion consensus. Commun. Math. Sci., 13(6):1407-1429, 2015. | DOI | MR | Zbl
, , and .[2] Boltzmann-type control of opinion consensus through leaders. Phil. Trans. R. Soc. A, 372(2028):20140138/1-18, 2014. | DOI | MR | Zbl
, , and .[3] Opinion dynamics: rise and fall of political parties. Europhys. Lett., 69(5):671-677, 2005.
.[4] On a discrete generalized kinetic approach for modelling persuader's influencein opinion formation processes. Math. Comput. Modelling, 48(7-8):1107-1121, 2008. | DOI | MR | Zbl
and .[5] A general consistent BGK model for gas mixtures. Kinet. Relat. Models, 11(6):1377-1393, 2018. | DOI | MR | Zbl
, , , , and .[6] Theory of collision algorithms for gases and plasmas based on the Boltzmann equation and the Landau-Fokker-Planck equation. Phys. Rev. E, 61(4):4576-4586, 2000.
and .[7] Modelling opinion formation by means of kinetic equations. In G. NALDI, L. PARESCHI, and G. TOSCANI, editors, Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences, Modeling and Simulation in Science, Engineering and Technology, pages 245-270. Birkhäuser, Boston, 2010. | DOI | MR | Zbl
and .[8] Science and statistics. J. Amer. Statist. Assoc., 71(356):791-799, 1976. | MR | Zbl
.[9] Robustness in the strategy of scientific model building. In Robustness in Statistics, pages 201-236. Academic Press, 1979.
.[10] Notes on the Boltzmann equation. Lecture notes for a summer course given at SISSA, Trieste (Italy), 2005.
.[11] Ludwig Boltzmann: The Man Who Trusted Atoms. Oxford University Press, 2000. | MR
.[12] Mesoscopic modelling of financial markets. J. Stat. Phys., 134(1):161-184, 2009. | DOI | MR | Zbl
, , and .[13] On a kinetic model for a simple market economy. J. Stat. Phys., 120(1):253-277, 2005. | DOI | MR | Zbl
, , and .[14] Boltzmann and Fokker Planck equations modelling opinion formation in the presence of strong leaders. Proc. R. Soc. A, 465(2112):3687-3708, 2009. | DOI | MR | Zbl
, , , and .[15] Kinetic models for optimal control of wealth inequalities. Eur. Phys. J. B, 91:265/1-12, 2018. | DOI | MR
, , and .[16] Beitrag zur Theorie des Ferromagnetismus. Z. Physik, 31:253-258, 1925. | Zbl
.[17] Long-time asymptotics for homoenergetic solutions of the Boltzmann equation: collision-dominated case. J. Nonlin. Sci., 29(5):1943-1973, 2019. | DOI | MR | Zbl
, , and .[18] Population dynamics of immune responses to persistent viruses. Science, 272(5258):74-79, 1996.
and .[19] Simulation of Sznajd sociophysics model with convincing single opinions. Internat. J. Modern Phys. C, 12(7):1091, 2001.
.[20] Hybrid multiscale methods for hyperbolic and kinetic problems. ESAIM: Proc., 15:87-120, 2005. | MR | Zbl
.[21] An introduction to Monte Carlo method for the Boltzmann equation. ESAIM: Proc., 10:35-75, 2001. | DOI | MR | Zbl
and .[22] Interacting Multiagent Systems: Kinetic equations and Monte Carlo methods. Oxford University Press, 2013. | Zbl
and .[23] Opinion formation models with heterogeneous persuasion and zealotry. SIAM J. Math. Anal., 50(5):4812-4837, 2018. | DOI | MR | Zbl
, , , and .[24] A Boltzmann-like approach to the statistical theory of traffic flow. In R. Herman, editor, Theory of traffic flow, pages 158-164, Amsterdam, 1961. Elsevier. | MR
.[25] A Boltzmann-like approach for traffic flow. Operations Res., 8(6):789-797, 1960. | DOI | MR | Zbl
and .[26] Kinetic theory of vehicular traffic. American Elsevier Publishing Co., New York, 1971. | Zbl
and .[27] The Boltzmann-Grad limit of a hard sphere system: analysis of the correlation error. Invent. Math., 207(3):1135-1237, 2017. | DOI | MR | Zbl
and .[28] Inelastically scattering particles and wealth distribution in an open economy. Phys. Rev. E, 69(4):046102/1-7, 2004.
.[29] Analytical results for the Sznajd model of opinion formation. Eur. Phys. J. B, 35:279-288, 2003.
and .[30] Opinion evolution in closed community. Internat. J. Modern Phys. C, 11(6):1157-1165, 2000.
and .[31] Kinetic models of opinion formation. Commun. Math. Sci., 4(3):481-496, 2006. | MR | Zbl
.[32] Sulle code di potenza di Pareto. Mat. Cult. Soc. Riv. Unione Mat. Ital. (I), 1(1):21-30, 2016. | fulltext bdim | fulltext EuDML | MR | Zbl
.[33] Multiple-interaction kinetic modeling of a virtual-item gambling economy. Phys. Rev. E, 100(1):012308/1-16, 2019.
, , and .[34] Kinetic modelling of multiple interactions in socio-economic systems. Netw. Heterog. Media, 15(3) 2020. To appear (preprint doi:10.13140/RG.2.2.25753.77929). | DOI | MR | Zbl
, , and .[35] Kinetic-controlled hydrodynamics for traffic models with driver-assist vehicles. Multiscale Model. Simul., 17(2):716-749, 2019. | DOI | MR | Zbl
and .[36] Uncertainty damping in kinetic traffic models by driver-assist controls. Math. Control Relat. Fields, 2020. To appear (preprint doi:10.13140/ RG.2.2.35871.41124). | DOI | MR | Zbl
and .[37] On a new class of weak solutions to the spatially homogeneous Boltzmann and Landau equations. Arch. Ration. Mech. Anal., 143(3):273-307, 1998. | DOI | MR | Zbl
.[38] A review of mathematical topics in collisional kinetic theory. In S. Friedlander and D. Serre, editors, Handbook of Mathematical Fluid Dynamics, volume I, chapter 2, pages 71-305. Elsevier, 2002. | DOI | MR | Zbl
.