I matematici giocano ... a biliardo!
Matematica, cultura e società, Série 1, Tome 4 (2019) no. 2, pp. 131-144.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

Quest'articolo si propone di offrire una panoramica sullo studio dei biliardi matematici. Ci concentreremo su una particolare classe, i cosiddetti Biliardi di Birkhoff, in cui il tavolo è costituito da una regione del piano limitata, strettamente convessa e con bordo regolare. Le proprietà dinamiche di questi modelli matematici sono strettamente legate alla forma del tavolo che si considera: comprendere fino a che punto la conoscenza di certi aspetti dinamici permetta di ricostruire la forma del biliardo, è alla base di importanti congetture al centro di intense attività di ricerca. In quest'articolo discuteremo alcune di queste problematiche e descriveremo recenti contributi verso la loro soluzione.
This article aims to offer a panorama of the study of mathematical billiards. We shall focus on a particular class, the so-called Birkhoff billiards, in which the table consists of a planar, bounded, strictly convex region with smooth boundary. The dynamical properties of these mathematical models are tightly intertwined with the shapeof the billiard table that one considers: understanding to which extent dynamical information allows one to reconstruct the shape of the billiard, is at the ground of interesting conjectures, at the center of intense research activities.
@article{RUMI_2019_1_4_2_a8,
     author = {Sorrentino, Alfonso},
     title = {I matematici giocano ... a biliardo!},
     journal = {Matematica, cultura e societ\`a},
     pages = {131--144},
     publisher = {mathdoc},
     volume = {Ser. 1, 4},
     number = {2},
     year = {2019},
     zbl = {1379.37104},
     mrnumber = {3965686},
     language = {it},
     url = {http://geodesic.mathdoc.fr/item/RUMI_2019_1_4_2_a8/}
}
TY  - JOUR
AU  - Sorrentino, Alfonso
TI  - I matematici giocano ... a biliardo!
JO  - Matematica, cultura e società
PY  - 2019
SP  - 131
EP  - 144
VL  - 4
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RUMI_2019_1_4_2_a8/
LA  - it
ID  - RUMI_2019_1_4_2_a8
ER  - 
%0 Journal Article
%A Sorrentino, Alfonso
%T I matematici giocano ... a biliardo!
%J Matematica, cultura e società
%D 2019
%P 131-144
%V 4
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RUMI_2019_1_4_2_a8/
%G it
%F RUMI_2019_1_4_2_a8
Sorrentino, Alfonso. I matematici giocano ... a biliardo!. Matematica, cultura e società, Série 1, Tome 4 (2019) no. 2, pp. 131-144. http://geodesic.mathdoc.fr/item/RUMI_2019_1_4_2_a8/

[ADK] Artur Avila, Jacopo De Simoi, Vadim Kaloshin. An integrable deformation of an ellipse of small eccentricity is an ellipse. Ann. Math., vol. 184, pp. 527-558, 2016. | DOI | MR | Zbl

[Bia] Misha Bialy. Convex billiards and a theorem by E. Hopf. Math. Z., vol. 124, pp. 147-154, 1993. | fulltext EuDML | DOI | MR | Zbl

[Bir] George D. Birkhoff. On the periodic motions of dynamical systems. Acta Math. vol. 50, pp. 359-379, 1927. | DOI | MR | Zbl

[FM] Giovanni Forni, Carlos Matheus. Introduction to Teichmüller theory and its applications to dynamics of interval exchange transformations, flows on surfaces and billiards. J. Mod. Dyn., vol. 8, pp. 271-436, 2014. | DOI | MR | Zbl

[GWW] Carolyn Gordon, David L. Webb, Scott Wolpert. One Cannot Hear the Shape of a Drum. Bulletin of the American Mathematical Society, vol. 27, no. 1, pp. 134-138, 1992. | DOI | MR | Zbl

[Hal] Benjamin Halpern. Strange billiard tables. Trans. Amer. Math. Soc., vol. 232, pp. 297-305, 1977. | DOI | MR | Zbl

[Ivr] Victor Ya. Ivrii. The second term of the spectral asymptotics for a Laplace-Beltrami operator on manifolds with boundary. Funktsional. Anal. i Prilozhen. vol. 14, no. 2, pp. 25-34, 1980. | MR

[Kac] Mark Kac. Can One Hear the Shape of a Drum?. The American Mathematical Monthly, vol. 73, no. 4, pp. 1-23, 1966. | DOI | MR | Zbl

[KS] Vadim Kaloshin, Alfonso Sorrentino. On the local Birkhoff conjecture for convex billiards. Ann. Math., vol. 188, pp. 315-380, 2018. | DOI | MR | Zbl

[Laz] Vladimir F. Lazutkin. Existence of caustics for the billiard problem in a convex domain. Izv. Akad. Nauk SSSR Ser. Mat., vol. 37, pp. 186-216, 1973 (in russo). | MR

[MT] Howard Masur, Sergei Tabachnikov. Rational billiards and flat structures. Handbook of Dynamical Systems, vol. 1A, North-Holland, 1015-1089, 2002. | DOI | MR | Zbl

[Mat] John N. Mather. Glancing billiards. Ergodic Theory Dynam. Systems 2 (3-4): 397-403, 1982. | DOI | MR | Zbl

[Por] Hillel Poritsky. The billiard ball problem on a table with a convex boundary–an illustrative dynamical problem. Ann. Math., vol. 51, pp. 446-470, 1950. | DOI | MR | Zbl

[Ray] John W.S. Rayleigh. The Problem of the Whispering Gallery. Phil. Mag., vol. 20, pp. 1001-1004, 1910. | Zbl

[Sin] Yakov G. Sinai. Dynamical systems with elastic reflections. Ergodic properties of dispersing billiards. Russ. Math. Surveys, vol. 25, pp. 137-189, 1970. | MR | Zbl

[Tab1] Sergei Tabachnikov. Billiards. Panor. Synth., pp. vi+142, 1995. | MR

[Tab2] Sergei Tabachnikov. Geometry and billiards. Student mathematical library, vol. 30, pp. xii+176, Providence, RI, American Mathematical Society, 2005. | DOI | MR