New axioms in set theory
Matematica, cultura e società, Série 1, Tome 3 (2018) no. 3, pp. 211-236

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

In this article we review the present situation in the foundations of set theory, discussing two programs meant to overcome the undecidability results, such as the independence of the continuum hypothesis; these programs are centered, respectively, on forcing axioms and Woodin's V = Ultimate-L conjecture. While doing so, we briefly introduce the key notions of set theory.
@article{RUMI_2018_1_3_3_a3,
     author = {Venturi, Giorgio and Viale, Matteo},
     title = {New axioms in set theory},
     journal = {Matematica, cultura e societ\`a},
     pages = {211--236},
     publisher = {mathdoc},
     volume = {Ser. 1, 3},
     number = {3},
     year = {2018},
     mrnumber = {3888477},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RUMI_2018_1_3_3_a3/}
}
TY  - JOUR
AU  - Venturi, Giorgio
AU  - Viale, Matteo
TI  - New axioms in set theory
JO  - Matematica, cultura e società
PY  - 2018
SP  - 211
EP  - 236
VL  - 3
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RUMI_2018_1_3_3_a3/
LA  - en
ID  - RUMI_2018_1_3_3_a3
ER  - 
%0 Journal Article
%A Venturi, Giorgio
%A Viale, Matteo
%T New axioms in set theory
%J Matematica, cultura e società
%D 2018
%P 211-236
%V 3
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RUMI_2018_1_3_3_a3/
%G en
%F RUMI_2018_1_3_3_a3
Venturi, Giorgio; Viale, Matteo. New axioms in set theory. Matematica, cultura e società, Série 1, Tome 3 (2018) no. 3, pp. 211-236. http://geodesic.mathdoc.fr/item/RUMI_2018_1_3_3_a3/