New axioms in set theory
Matematica, cultura e società, Série 1, Tome 3 (2018) no. 3, pp. 211-236.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

In this article we review the present situation in the foundations of set theory, discussing two programs meant to overcome the undecidability results, such as the independence of the continuum hypothesis; these programs are centered, respectively, on forcing axioms and Woodin's V = Ultimate-L conjecture. While doing so, we briefly introduce the key notions of set theory.
Questo articolo offre una panoramica della ricerca sui fondamenti della teoria degli insiemi,discutendo due programmi che mirano a superare i risultati di indecidibilità, tra i quali l'indipendenza dell'ipotesi del continuo. I due programmi sono basati, rispettivamente, sugli Assiomi di Forcing e su una congettura di Woodin chiamata V = Ultimate-L. Nel presentare queste ricerche introdurremo brevemente le principali nozioni di teoria degli insiemi.
@article{RUMI_2018_1_3_3_a3,
     author = {Venturi, Giorgio and Viale, Matteo},
     title = {New axioms in set theory},
     journal = {Matematica, cultura e societ\`a},
     pages = {211--236},
     publisher = {mathdoc},
     volume = {Ser. 1, 3},
     number = {3},
     year = {2018},
     zbl = {06815211},
     mrnumber = {3888477},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RUMI_2018_1_3_3_a3/}
}
TY  - JOUR
AU  - Venturi, Giorgio
AU  - Viale, Matteo
TI  - New axioms in set theory
JO  - Matematica, cultura e società
PY  - 2018
SP  - 211
EP  - 236
VL  - 3
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RUMI_2018_1_3_3_a3/
LA  - en
ID  - RUMI_2018_1_3_3_a3
ER  - 
%0 Journal Article
%A Venturi, Giorgio
%A Viale, Matteo
%T New axioms in set theory
%J Matematica, cultura e società
%D 2018
%P 211-236
%V 3
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RUMI_2018_1_3_3_a3/
%G en
%F RUMI_2018_1_3_3_a3
Venturi, Giorgio; Viale, Matteo. New axioms in set theory. Matematica, cultura e società, Série 1, Tome 3 (2018) no. 3, pp. 211-236. http://geodesic.mathdoc.fr/item/RUMI_2018_1_3_3_a3/

[1] G. Audrito and M. Viale. Absoluteness via resurrection. Journal of Mathematical Logic, 17(2):1750005, 36, 2017. | DOI | MR | Zbl

[2] N. Barton, C. Ternullo, and G. Venturi. On forms of justification in set theory. Preprint, 2018.

[3] J. Bell. Set Theory. Boolean Valued Models and Independence Proofs. Oxford Science Pubblications, 2005. | DOI | MR | Zbl

[4] P. Bernays. Sur le platonism dans les mathématiques. L'enseignement mathématique, (34):52-69, 1935. English transl.: On mathematical platonism, in P. Benacerraf and H. Putnam, editors, Philosophy of mathematics: selected readings, Cambridge University Press, pp. 258-271, 1983. | MR

[5] G. Boolos. The iterative conception of set. Journal of Philosophy, 68(8):215-231, 1971.

[6] F. Calderoni and S. Thomas. The bi-embeddability relation for countable abelian groups. Transaction of the American Mathematical Society, To appear. | DOI | MR | Zbl

[7] G. Cantor. Grundlagen einer allgemeinen Mannigfaltigkeitslehre. Ein mathematich-philosophischer Versuch in der Lehre des Unendichen. Teubner, 1883. English transl.: Foundations of a general theory of manifolds: a mathematico-philosophical investigation into the theory of the infinite, in W. Ewald, editor, From Kant to Hilbert: A Source Book in the Foundations of Mathematics, vol. II, Clarendon Press, Oxford, pp. 878-919, 2008.

[8] G. Cantor. Beiträge zur Begründung der transfiniten Mengenlehre. Mathematische Annalen, 46(4):481-512, 1895. Italian transl.: in G. Cantor, La Formazione della Teoria degli Insiemi (Scritti 1872-1899), G. Rigamonti, editor, Mimesis, 2012. | fulltext EuDML | DOI | MR

[9] J. P. Cohen. The independence of the continuum hypothesis. Proceedings of the National Academy of Sciences of the United States of America, 50(6):1143-1148, 1963. | DOI | MR | Zbl

[10] J. P. Cohen. Skolem and pessimism about proof in mathematics. Philosophical Transaction of the Royal Society A, 363:2407-2418, 2005. | DOI | MR | Zbl

[11] H. G. Dales and W. H. Woodin. An Introduction to Independence for Analysts, volume 115 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 1987. | DOI | MR | Zbl

[12] I. Farah. All automorphisms of the Calkin algebra are inner. Annals of Mathematics, 173(2):619-661, 2010. | DOI | MR | Zbl

[13] S. Feferman. Does mathematics need new axioms? American Mathematical Monthly, 106:106-111, 1999. | DOI | MR | Zbl

[14] S. Feferman, H. Friedman, P. Maddy, and J. Steel. Does mathematics need new axioms? Bulletin of Symbolic Logic, 6(4):401-446, 2000. | DOI | MR | Zbl

[15] Q. Feng, M. Magidor, and H. Woodin. Universally Baire sets of reals. In H. Judah, W. Just, and H. Woodin, editors, Set Theory of the Continuum, pages 203-242. Springer, 1992. | DOI | MR | Zbl

[16] J. Ferreirós. Labyrinth of Thought. A History of Set Theory and its Role in Modern Mathematics. Birkhäuser, 1999. | DOI | MR

[17] J. Ferreirós. On arbitrary sets and ZFC. Bullettin of Symbolic logic, 17(3):361-393, 2011. | DOI | MR

[18] K. Fine and N. Tennant. A Defence of Arbitrary Objects. Proceedings of the Aristotelian Society, Supplementary Volumes, 57:55-77 + 79-89, 1983.

[19] M. Foreman, M. Magidor and S. Shelah. Martin's Maximum, saturated ideals and nonregular ultrafilters. Annals of Mathematics (2), 127(1):1-47, 1988. | DOI | MR | Zbl

[20] D. Gale and F. Stewart. Infinite games with perfect information. In H. W. Kuhn and A. W. Tucker, editors, Contributions to the Theory of Games, pages 245-266. Princeton University press, 1953. | MR | Zbl

[21] S. Givant and P. Halmos. Introduction to Boolean Algebras. Undergraduate Texts in Mathematics. Springer, New York, 2009. | DOI | MR | Zbl

[22] K. Gödel. The consistency of the axiom of choice and of the generalized continuum-hypothesis. Proceedings of the National Academy of Sciences of the United States of America. National Academy of Sciences, 24(12):556-557, 1938.

[23] K. Gödel. What is Cantor's continuum problem? American Mathematical Monthly, (54):515-525, 1947; errata, 55, p. 151. Italian trasl.: Cos'è il problema del continuo di Cantor?, in E. Ballo and G. Lolli and C. Mangione, editors, Opere. Volume 2, 1938-1974, Bollati Boringhieri, pp. 180-192, 2002. | DOI | MR

[24] R. Goldblatt. On the role of the Baire category theorem and dependent choice in the foundation of logic. The Journal of Symbolic Logic, 50(2):412-422, 1985. | DOI | MR | Zbl

[25] G. Gray. Plato's Ghost. The Modernist Trasnformation of Mathematics. Princeton University Press, 2008. | MR | Zbl

[26] J. D. Hamkins and D. Seabold. Well-founded boolean ultrapowers as large cardinal embeddings. 40 pages, 2012.

[27] D. Hilbert. Mathematical problems. Bulletin of the American Mathematical Society, 37(4):407-436, 2000. Italian translation in: V. Abrusci (editor), D. Hilbert, Ricerche sui fondamenti della matematica, Bibliopolis, 1978, pp. 145-162. | DOI | MR | Zbl

[28] K. Hrbacek and T. Jech. Introduction to set theory, volume 220 of Monographs and Textbooks in Pure and Applied Mathematics. Marcel Dekker, Inc., New York, third edition, 1999. | MR

[29] R. B. Jensen. The fine structure of the constructible hierarchy. Annals of Pure and Applied Logic, 4:229-308; erratum, ibid. 4 (1972), 443, 1972. With a section by Jack Silver. | DOI | MR | Zbl

[30] A. Kanamori. The Higher Infinite. Large Cardinals in Set Theory from their Beginnings. Springer-Verlag, 1994. | MR | Zbl

[31] A. Kechris. Classical Descriptive Set Theory. Springer Verlag, 1994. | DOI | MR | Zbl

[32] P. Koellner. On the question of absolute undecidability. Philosophia Mathematica, 14:153-188, 2006. | DOI | MR | Zbl

[33] P. Koellner. On reflection principles. Annals of Pure and Applied Logic, 157(2)(4):206-219, 2009. | DOI | MR | Zbl

[34] K. Kunen. Set Theory. An Introduction to Independence Proofs. North-Holland, 1980. | MR | Zbl

[35] P. B. Larson. The Stationary Tower: Notes on a Course by W. Hugh Woodin. AMS, 2004. | DOI | MR | Zbl

[36] P. B. Larson. A brief history of determinacy. In Sets and Extensions in the Twentieth Century, 2012. | DOI | MR | Zbl

[37] P. Maddy. Naturalism in Mathematics. Clarendon Press, 1997. | MR | Zbl

[38] P. Maddy. Defending the Axioms: On the Philosophical Foundations of Set Theory. Oxford University Press, 2011. | DOI | MR | Zbl

[39] D. Martin. Measurable cardinals and analytic games. Fundamenta Mathematicae, 66:287-291, 1970. | fulltext EuDML | DOI | MR | Zbl

[40] D. Martin. Borel determinacy. Annals of Mathematics, 102:363-371, 1975. | DOI | MR

[41] D. A. Martin and J. R. Steel. A proof of projective determinacy. Journal of the American Mathematical Society, 2(1):71-125, 1989. | DOI | MR | Zbl

[42] J. P. Mayberry. The Foundations of Mathematics in the Theory of Sets. Cambridge University Press, 2000. | MR | Zbl

[43] G. H. Moore. Zermelo's Axiom of Choice. Dover, 1982. | DOI | MR | Zbl

[44] J. T. Moore. The Proper Forcing Axiom. In R. Bhatia, editor, Proceedings of the International Congress of Mathematicians. Volume 2, pages 1-25. World Scientific, 2010. | MR

[45] J. T. Moore. What makes the continuum N2. In Foundations of Mathematics, volume 690 of Contemp. Math., pages 259-287. Amer. Math. Soc., Providence, RI, 2017. | MR | Zbl

[46] J. Mycielski and H. Steinhaus. A mathematical axiom contradicting the axiom of choice. Bulletin de l'Académie Polonaise des Sciences, 10:1-3, 1962. | MR | Zbl

[47] N. Phillips and N. Weaver. The calkin algebra has outer automorphisms. Duke Mathematical Journal, 139(1):185-202, 2007. | DOI | MR | Zbl

[48] D. Scott. Measurable cardinals and constructible sets. Bulletin de l'Académie Polonaise des Sciences, Série des sciences mathématiques, astronomiques et physiques, 9:521-524, 1961. | MR | Zbl

[49] S. Shelah. Whitehead groups may not be free, even assuming CH. I. Israel Journal of Mathematics, 28(3):193-203, 1977. | DOI | MR | Zbl

[50] S. Shelah. Whitehead groups may not be free, even assuming CH. II. Israel Journal of Mathematics, 35(4):257-285, 1980. | DOI | MR | Zbl

[51] M. A. Shulman. Set theory for category theory. arXiv:0810.1279v2, 2008.

[52] R. Solovay. A model of set-theory in which every set of reals is Lebesgue measurable. Annals of Mathematics. Second Series, 92(1):1-56, 1970. | DOI | MR | Zbl

[53] J. Steel. What is a Woodin cardinal? Notices of the American Mathematical Society, 54(9):1146-1147, 2007. | MR | Zbl

[54] S. Todorcæević. Partition Problems in Topology, volume 84 of Contemporary Mathematics. American Mathematical Society, Providence, RI, 1989. | DOI | MR

[55] A. Vaccaro and M. Viale. Generic absoluteness and boolean names for elements of a Polish space. Boll. Unione Mat. Ital., 10(3):293-319, 2017. | DOI | MR | Zbl

[56] G. Venturi. Forcing, multiverse and realism. In F. Boccuni and A. Sereni, editors, Objectivity, Knowledge and Proof. FIlMat Studies in the Philosophy of Mathematics, 211-241. Springer, 2016. | MR

[57] G. Venturi. Genericity and arbitrariness, Logique et Analyse. To appear.

[58] G. Venturi. On generic arbitrary models of set theory. Preprint, 2017.

[59] M. Viale. Notes on forcing. | Zbl

[60] M. Viale. Category forcings, MM+++ and generic absoluteness for the theory of strong forcing axioms. Journal of the American Mathematical Society, 29(3):675-728, 2016. | DOI | MR | Zbl

[61] M. Viale. Forcing the truth of a weak form of Schanuel's conjecture. Confluentes Math., 8(2):59-83, 2016. | DOI | MR | Zbl

[62] M. Viale. Useful axioms. Ifcolog Journal of Logics and their Applications, 4(10):3427-3462, 2017.

[63] H. Woodin. The Continuum Hypothesis. Part I. Notices of the American Mathematical Society, 48(6):567-576, 2001. | MR | Zbl

[64] E. Zermelo. Untersuchungen über die Grundlagen der Mengenlehre I. Mathematische Annalen, 65:261-281, 1908. English transl.: Investigations in the foundations of set theory I, in J. van Heijenoort, editor, From Frege to Gödel: A Source Book in Mathematical Logic, 1879-1931, Source Books in the History of the Sciences, Harvard Univ. Press, pp. 199-215, 1967. | fulltext EuDML | DOI | MR | Zbl

[65] E. Zermelo. Über Grenzzahlen und Mengenbereiche: Neue Untersuchungen über die Grundlagen der Mengenlehre. Fundamenta Mathematicae, 16:29-47, 1930. English transl.: On boundary numbers and domains of sets: New investigations in the foundations of set theory, in W. Ewald, editor, From Kant to Hilbert: A Source Book in the Foundations of Mathematics, vol. II, Clarendon Press, Oxford, pp. 1219-1233, 2008; Italian transl.: in C. Cellucci, editor, Il Paradiso di Cantor, Bibliopolis, pp. 178-195, 1978. | fulltext EuDML | MR