New axioms in set theory
Matematica, cultura e società, Série 1, Tome 3 (2018) no. 3, pp. 211-236
Cet article a éte moissonné depuis la source Biblioteca Digitale Italiana di Matematica
In this article we review the present situation in the foundations of set theory, discussing two programs meant to overcome the undecidability results, such as the independence of the continuum hypothesis; these programs are centered, respectively, on forcing axioms and Woodin's V = Ultimate-L conjecture. While doing so, we briefly introduce the key notions of set theory.
@article{RUMI_2018_1_3_3_a3,
author = {Venturi, Giorgio and Viale, Matteo},
title = {New axioms in set theory},
journal = {Matematica, cultura e societ\`a},
pages = {211--236},
year = {2018},
volume = {Ser. 1, 3},
number = {3},
mrnumber = {3888477},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RUMI_2018_1_3_3_a3/}
}
Venturi, Giorgio; Viale, Matteo. New axioms in set theory. Matematica, cultura e società, Série 1, Tome 3 (2018) no. 3, pp. 211-236. http://geodesic.mathdoc.fr/item/RUMI_2018_1_3_3_a3/