Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{RUMI_2018_1_3_3_a3, author = {Venturi, Giorgio and Viale, Matteo}, title = {New axioms in set theory}, journal = {Matematica, cultura e societ\`a}, pages = {211--236}, publisher = {mathdoc}, volume = {Ser. 1, 3}, number = {3}, year = {2018}, zbl = {06815211}, mrnumber = {3888477}, language = {en}, url = {http://geodesic.mathdoc.fr/item/RUMI_2018_1_3_3_a3/} }
Venturi, Giorgio; Viale, Matteo. New axioms in set theory. Matematica, cultura e società, Série 1, Tome 3 (2018) no. 3, pp. 211-236. http://geodesic.mathdoc.fr/item/RUMI_2018_1_3_3_a3/
[1] Absoluteness via resurrection. Journal of Mathematical Logic, 17(2):1750005, 36, 2017. | DOI | MR | Zbl
and .[2] On forms of justification in set theory. Preprint, 2018.
, , and .[3] Set Theory. Boolean Valued Models and Independence Proofs. Oxford Science Pubblications, 2005. | DOI | MR | Zbl
.[4] Sur le platonism dans les mathématiques. L'enseignement mathématique, (34):52-69, 1935. English transl.: On mathematical platonism, in P. Benacerraf and H. Putnam, editors, Philosophy of mathematics: selected readings, Cambridge University Press, pp. 258-271, 1983. | MR
.[5] The iterative conception of set. Journal of Philosophy, 68(8):215-231, 1971.
.[6] The bi-embeddability relation for countable abelian groups. Transaction of the American Mathematical Society, To appear. | DOI | MR | Zbl
and .[7] Grundlagen einer allgemeinen Mannigfaltigkeitslehre. Ein mathematich-philosophischer Versuch in der Lehre des Unendichen. Teubner, 1883. English transl.: Foundations of a general theory of manifolds: a mathematico-philosophical investigation into the theory of the infinite, in W. Ewald, editor, From Kant to Hilbert: A Source Book in the Foundations of Mathematics, vol. II, Clarendon Press, Oxford, pp. 878-919, 2008.
.[8] Beiträge zur Begründung der transfiniten Mengenlehre. Mathematische Annalen, 46(4):481-512, 1895. Italian transl.: in G. Cantor, La Formazione della Teoria degli Insiemi (Scritti 1872-1899), G. Rigamonti, editor, Mimesis, 2012. | fulltext EuDML | DOI | MR
.[9] The independence of the continuum hypothesis. Proceedings of the National Academy of Sciences of the United States of America, 50(6):1143-1148, 1963. | DOI | MR | Zbl
.[10] Skolem and pessimism about proof in mathematics. Philosophical Transaction of the Royal Society A, 363:2407-2418, 2005. | DOI | MR | Zbl
.[11] An Introduction to Independence for Analysts, volume 115 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 1987. | DOI | MR | Zbl
and .[12] All automorphisms of the Calkin algebra are inner. Annals of Mathematics, 173(2):619-661, 2010. | DOI | MR | Zbl
.[13] Does mathematics need new axioms? American Mathematical Monthly, 106:106-111, 1999. | DOI | MR | Zbl
.[14] Does mathematics need new axioms? Bulletin of Symbolic Logic, 6(4):401-446, 2000. | DOI | MR | Zbl
, , , and .[15] Universally Baire sets of reals. In H. Judah, W. Just, and H. Woodin, editors, Set Theory of the Continuum, pages 203-242. Springer, 1992. | DOI | MR | Zbl
, , and .[16] Labyrinth of Thought. A History of Set Theory and its Role in Modern Mathematics. Birkhäuser, 1999. | DOI | MR
.[17] On arbitrary sets and ZFC. Bullettin of Symbolic logic, 17(3):361-393, 2011. | DOI | MR
.[18] A Defence of Arbitrary Objects. Proceedings of the Aristotelian Society, Supplementary Volumes, 57:55-77 + 79-89, 1983.
and .[19] Martin's Maximum, saturated ideals and nonregular ultrafilters. Annals of Mathematics (2), 127(1):1-47, 1988. | DOI | MR | Zbl
, and .[20] Infinite games with perfect information. In H. W. Kuhn and A. W. Tucker, editors, Contributions to the Theory of Games, pages 245-266. Princeton University press, 1953. | MR | Zbl
and .[21] Introduction to Boolean Algebras. Undergraduate Texts in Mathematics. Springer, New York, 2009. | DOI | MR | Zbl
and .[22] The consistency of the axiom of choice and of the generalized continuum-hypothesis. Proceedings of the National Academy of Sciences of the United States of America. National Academy of Sciences, 24(12):556-557, 1938.
.[23] What is Cantor's continuum problem? American Mathematical Monthly, (54):515-525, 1947; errata, 55, p. 151. Italian trasl.: Cos'è il problema del continuo di Cantor?, in E. Ballo and G. Lolli and C. Mangione, editors, Opere. Volume 2, 1938-1974, Bollati Boringhieri, pp. 180-192, 2002. | DOI | MR
.[24] On the role of the Baire category theorem and dependent choice in the foundation of logic. The Journal of Symbolic Logic, 50(2):412-422, 1985. | DOI | MR | Zbl
.[25] Plato's Ghost. The Modernist Trasnformation of Mathematics. Princeton University Press, 2008. | MR | Zbl
.[26] Well-founded boolean ultrapowers as large cardinal embeddings. 40 pages, 2012.
and .[27] Mathematical problems. Bulletin of the American Mathematical Society, 37(4):407-436, 2000. Italian translation in: V. Abrusci (editor), D. Hilbert, Ricerche sui fondamenti della matematica, Bibliopolis, 1978, pp. 145-162. | DOI | MR | Zbl
.[28] Introduction to set theory, volume 220 of Monographs and Textbooks in Pure and Applied Mathematics. Marcel Dekker, Inc., New York, third edition, 1999. | MR
and .[29] The fine structure of the constructible hierarchy. Annals of Pure and Applied Logic, 4:229-308; erratum, ibid. 4 (1972), 443, 1972. With a section by Jack Silver. | DOI | MR | Zbl
.[30] The Higher Infinite. Large Cardinals in Set Theory from their Beginnings. Springer-Verlag, 1994. | MR | Zbl
.[31] Classical Descriptive Set Theory. Springer Verlag, 1994. | DOI | MR | Zbl
.[32] On the question of absolute undecidability. Philosophia Mathematica, 14:153-188, 2006. | DOI | MR | Zbl
.[33] On reflection principles. Annals of Pure and Applied Logic, 157(2)(4):206-219, 2009. | DOI | MR | Zbl
.[34] Set Theory. An Introduction to Independence Proofs. North-Holland, 1980. | MR | Zbl
.[35] The Stationary Tower: Notes on a Course by W. Hugh Woodin. AMS, 2004. | DOI | MR | Zbl
.[36] A brief history of determinacy. In Sets and Extensions in the Twentieth Century, 2012. | DOI | MR | Zbl
.[37] Naturalism in Mathematics. Clarendon Press, 1997. | MR | Zbl
.[38] Defending the Axioms: On the Philosophical Foundations of Set Theory. Oxford University Press, 2011. | DOI | MR | Zbl
.[39] Measurable cardinals and analytic games. Fundamenta Mathematicae, 66:287-291, 1970. | fulltext EuDML | DOI | MR | Zbl
.[40] Borel determinacy. Annals of Mathematics, 102:363-371, 1975. | DOI | MR
.[41] A proof of projective determinacy. Journal of the American Mathematical Society, 2(1):71-125, 1989. | DOI | MR | Zbl
and .[42] The Foundations of Mathematics in the Theory of Sets. Cambridge University Press, 2000. | MR | Zbl
.[43] Zermelo's Axiom of Choice. Dover, 1982. | DOI | MR | Zbl
.[44] The Proper Forcing Axiom. In R. Bhatia, editor, Proceedings of the International Congress of Mathematicians. Volume 2, pages 1-25. World Scientific, 2010. | MR
.[45] What makes the continuum N2. In Foundations of Mathematics, volume 690 of Contemp. Math., pages 259-287. Amer. Math. Soc., Providence, RI, 2017. | MR | Zbl
.[46] A mathematical axiom contradicting the axiom of choice. Bulletin de l'Académie Polonaise des Sciences, 10:1-3, 1962. | MR | Zbl
and .[47] The calkin algebra has outer automorphisms. Duke Mathematical Journal, 139(1):185-202, 2007. | DOI | MR | Zbl
and .[48] Measurable cardinals and constructible sets. Bulletin de l'Académie Polonaise des Sciences, Série des sciences mathématiques, astronomiques et physiques, 9:521-524, 1961. | MR | Zbl
.[49] Whitehead groups may not be free, even assuming CH. I. Israel Journal of Mathematics, 28(3):193-203, 1977. | DOI | MR | Zbl
.[50] Whitehead groups may not be free, even assuming CH. II. Israel Journal of Mathematics, 35(4):257-285, 1980. | DOI | MR | Zbl
.[51] Set theory for category theory. arXiv:0810.1279v2, 2008.
.[52] A model of set-theory in which every set of reals is Lebesgue measurable. Annals of Mathematics. Second Series, 92(1):1-56, 1970. | DOI | MR | Zbl
.[53] What is a Woodin cardinal? Notices of the American Mathematical Society, 54(9):1146-1147, 2007. | MR | Zbl
.[54] Partition Problems in Topology, volume 84 of Contemporary Mathematics. American Mathematical Society, Providence, RI, 1989. | DOI | MR
.[55] Generic absoluteness and boolean names for elements of a Polish space. Boll. Unione Mat. Ital., 10(3):293-319, 2017. | DOI | MR | Zbl
and .[56] Forcing, multiverse and realism. In F. Boccuni and A. Sereni, editors, Objectivity, Knowledge and Proof. FIlMat Studies in the Philosophy of Mathematics, 211-241. Springer, 2016. | MR
.[57] Genericity and arbitrariness, Logique et Analyse. To appear.
.[58] On generic arbitrary models of set theory. Preprint, 2017.
.[59] Notes on forcing. | Zbl
.[60] Category forcings, MM+++ and generic absoluteness for the theory of strong forcing axioms. Journal of the American Mathematical Society, 29(3):675-728, 2016. | DOI | MR | Zbl
.[61] Forcing the truth of a weak form of Schanuel's conjecture. Confluentes Math., 8(2):59-83, 2016. | DOI | MR | Zbl
.[62] Useful axioms. Ifcolog Journal of Logics and their Applications, 4(10):3427-3462, 2017.
.[63] The Continuum Hypothesis. Part I. Notices of the American Mathematical Society, 48(6):567-576, 2001. | MR | Zbl
.[64] Untersuchungen über die Grundlagen der Mengenlehre I. Mathematische Annalen, 65:261-281, 1908. English transl.: Investigations in the foundations of set theory I, in J. van Heijenoort, editor, From Frege to Gödel: A Source Book in Mathematical Logic, 1879-1931, Source Books in the History of the Sciences, Harvard Univ. Press, pp. 199-215, 1967. | fulltext EuDML | DOI | MR | Zbl
.[65] Über Grenzzahlen und Mengenbereiche: Neue Untersuchungen über die Grundlagen der Mengenlehre. Fundamenta Mathematicae, 16:29-47, 1930. English transl.: On boundary numbers and domains of sets: New investigations in the foundations of set theory, in W. Ewald, editor, From Kant to Hilbert: A Source Book in the Foundations of Mathematics, vol. II, Clarendon Press, Oxford, pp. 1219-1233, 2008; Italian transl.: in C. Cellucci, editor, Il Paradiso di Cantor, Bibliopolis, pp. 178-195, 1978. | fulltext EuDML | MR
.