Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{RUMI_2018_1_3_1_a4, author = {Groppi, Maria and Della Marca, Rossella}, title = {Modelli epidemiologici e vaccinazioni:da {Bernoulli} a oggi}, journal = {Matematica, cultura e societ\`a}, pages = {45--59}, publisher = {mathdoc}, volume = {Ser. 1, 3}, number = {1}, year = {2018}, zbl = {1397.92634}, mrnumber = {3821682}, language = {it}, url = {http://geodesic.mathdoc.fr/item/RUMI_2018_1_3_1_a4/} }
TY - JOUR AU - Groppi, Maria AU - Della Marca, Rossella TI - Modelli epidemiologici e vaccinazioni:da Bernoulli a oggi JO - Matematica, cultura e società PY - 2018 SP - 45 EP - 59 VL - 3 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RUMI_2018_1_3_1_a4/ LA - it ID - RUMI_2018_1_3_1_a4 ER -
Groppi, Maria; Della Marca, Rossella. Modelli epidemiologici e vaccinazioni:da Bernoulli a oggi. Matematica, cultura e società, Série 1, Tome 3 (2018) no. 1, pp. 45-59. http://geodesic.mathdoc.fr/item/RUMI_2018_1_3_1_a4/
[1] Infectious Diseases of Humans: Dynamics and Control. Oxford University Press, Oxford, 1992.
and .[2] A Short History of Mathematical Population Dynamics, Chapter: Daniel Bernoulli, d'Alembert and the inoculation of smallpox (1760), pages 21-30. Springer, London, 2011.
.[3] Imitation dynamics predict vaccinating behaviour. Proceedings of the Royal Society of London B: Biological Sciences, 272(1573):1669-1675, 2005.
.[4] Essai d'une nouvelle analyse de la mortalité causée par la petite vérole et des avantages de l'inoculation pour la prévenir. Histoire de l'Académie Royale des Sciences Paris, pages 1-45, 1760/1766.
.[5] Time-optimal control strategies in SIR epidemic models. Mathematical Biosciences, 292:86-96, 2017. | DOI | MR | Zbl
, , , and .[6] Smallpox inoculation: an eighteenth century mathematical controversy (1971). In S. Haberman and T. A. Sibbett, editors, History of Actuarial Science, volume VIII, Multiple Decrement and Multiple State Models, page 1. William Pickering, London, 1995.
.[7] Effect of seasonality on the dynamics of an imitation-based vaccination model with public health intervention. Mathematical Biosciences and Engineering, 15(1):299-321, 2018. | DOI | MR | Zbl
, , and .[8] Optimal Public Health intervention in a behavioral vaccination model: the interplay between seasonality, behavior and latency period. Submitted. | DOI | MR
, , and .[9] Global stability of an SIR epidemic model with information dependent vaccination. Mathematical Biosciences, 216(1):9-16, 2008. | DOI | MR | Zbl
, , and .[10] Modeling of pseudo-rational exemption to vaccination for SEIR diseases. Journal of Mathematical Analysis and Applications, 404(2):385-398, 2013. | DOI | MR | Zbl
, , and .[11] History and epidemiology of global smallpox eradication. In Smallpox: disease, prevention, and intervention, 2014.
.[12] Il vaccino contro il vaiolo: la querelle Bernoulli-d'Alembert e il calcolo della probabilità. Lettera Matematica Pristem, 91, 2014.
and .[13] Optimal control of periodic epidemic models. Master's thesis, University of Naples Federico II, 2017.
.[14] Daniel Bernoulli's epidemiological model revisited. Mathematical Biosciences, 180(1-2):1-21, 2002. | DOI | MR | Zbl
and .[15] The interplay of public intervention and private choices in determining the outcome of vaccination programmes. PLoS One, 7(10):e45653, 2012.
, , and .[16] Vaccinating behaviour, information, and the dynamics of SIR vaccine preventable diseases. Theoretical Population Biology, 71(3):301-317, 2007. | Zbl
, , and .[17] Herd immunity: a rough guide. Clinical Infectious Diseases, 52(7):911-916, 2011.
, , and .[18] The mathematics of infectious diseases. SIAM Review, 42(4):599-653, 2000. | DOI | MR | Zbl
.[19]
, 2017. http://www.epicentro.iss.it/temi/vaccinazioni/ObbligoVaccinale.asp.[20] An inquiry into the causes and effects of the variolae vaccinae: a disease discovered in some of the western counties of England, particularly Gloucestershire, and known by the name of the cow pox (1798). In The Three Original Publications on Vaccination Against Smallpox, volume XXXVIII, Part 4 of The Harvard Classics. P.F. Collier & Son, New York, 1909-14.
.[21] A contribution to the mathematical theory of epidemics. In Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, volume 115, pages 700-721. The Royal Society, 1927. | Zbl
and .[22] P. MANFREDI and A. d'ONOFRIO, editors. Modeling the Interplay Between Human Behavior and the Spread of Infectious Diseases. Springer, New York, 2013. | DOI | MR | Zbl
[23] The impact of imitation on vaccination behavior in social contact networks. PLoS Computational Biology, 8(4):e1002469, 2012. | DOI | MR
, , , , , , and .[24] 11 vaccins obligatoires en 2018, 2017 http://solidarites-sante.gouv.fr/prevention-en-sante/preserver-sa-sante/vaccination/vaccins-obligatoires/article/11-vaccins-obligatoires-en-2018-1e-projet-de-loi.
.[25] When zombies attack!: mathematical modelling of an outbreak of zombie infection. Infectious Disease Modelling Research Progress, 4:133-150, 2009.
, , , and .[26] Mathematical Biology. Springer, New York, Tokyo, 1989. | DOI | MR | Zbl
.[27] Early transmission dynamics of Ebola virus disease (EVD), West Africa, March to August 2014. Eurosurveillance, 19(36):20894, 2014.
and .[28] The Mathematical Theory of Optimal Processes. New York. Wiley Interscience, 1962. | MR | Zbl
, , , and .[29] Statistical physics of vaccination. Physical Report, 664:1-113, 2016. | DOI | MR | Zbl
, , , , , , , , and .[30] Measles. Fact sheet, 2018. http://www.who.int/ mediacentre/factsheets/fs286/en/.
.