Modelli epidemiologici e vaccinazioni:da Bernoulli a oggi
Matematica, cultura e società, Série 1, Tome 3 (2018) no. 1, pp. 45-59.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

In questa rassegna vengono richiamati i modelli matematici alla base dell'epidemiologia matematica e vengono presentati alcuni modelli recenti di epidemiologia comportamentale, che permettono di rappresentare il processo decisionale che sta alla base della scelta di vaccinare. Verranno considerati a tale scopo modelli di tipo SIRV (Suscettibili - Infetti - Rimossi - Vaccinati) in cui la frazione di popolazione vaccinata $p(t)$ può dipendere da processi di imitazione (come in teoria dei giochi) o dalle informazioni (passate e presenti) disponibili. Infine verrà discusso un problema di controllo ottimo che permette di identificare il profilo temporale delle strategie di persuasione a vaccinare che le autorità sanitarie possono esercitare.
In this review, we recall the basic models of mathematical epidemiology and present some of their recent advances in the context of behavioral epidemiology. Such new models allow to mathematically represent the decision-making process ruling the immunization choices. In particular, a SIRV (Susceptibles - Infectious - Removed - Vaccinated) model is considered, where vaccine uptake levels can depend on imitation processes (as in game theory) or on the (past and present) available information about the disease status. Finally, an optimal control problem is discussed in order to identify the temporal profile of persuasive campaigns for vaccination that public health systems can implement.
@article{RUMI_2018_1_3_1_a4,
     author = {Groppi, Maria and Della Marca, Rossella},
     title = {Modelli epidemiologici e vaccinazioni:da {Bernoulli} a oggi},
     journal = {Matematica, cultura e societ\`a},
     pages = {45--59},
     publisher = {mathdoc},
     volume = {Ser. 1, 3},
     number = {1},
     year = {2018},
     zbl = {1397.92634},
     mrnumber = {3821682},
     language = {it},
     url = {http://geodesic.mathdoc.fr/item/RUMI_2018_1_3_1_a4/}
}
TY  - JOUR
AU  - Groppi, Maria
AU  - Della Marca, Rossella
TI  - Modelli epidemiologici e vaccinazioni:da Bernoulli a oggi
JO  - Matematica, cultura e società
PY  - 2018
SP  - 45
EP  - 59
VL  - 3
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RUMI_2018_1_3_1_a4/
LA  - it
ID  - RUMI_2018_1_3_1_a4
ER  - 
%0 Journal Article
%A Groppi, Maria
%A Della Marca, Rossella
%T Modelli epidemiologici e vaccinazioni:da Bernoulli a oggi
%J Matematica, cultura e società
%D 2018
%P 45-59
%V 3
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RUMI_2018_1_3_1_a4/
%G it
%F RUMI_2018_1_3_1_a4
Groppi, Maria; Della Marca, Rossella. Modelli epidemiologici e vaccinazioni:da Bernoulli a oggi. Matematica, cultura e società, Série 1, Tome 3 (2018) no. 1, pp. 45-59. http://geodesic.mathdoc.fr/item/RUMI_2018_1_3_1_a4/

[1] R. Anderson and R. May. Infectious Diseases of Humans: Dynamics and Control. Oxford University Press, Oxford, 1992.

[2] N. Bacaër. A Short History of Mathematical Population Dynamics, Chapter: Daniel Bernoulli, d'Alembert and the inoculation of smallpox (1760), pages 21-30. Springer, London, 2011.

[3] C. T. Bauch. Imitation dynamics predict vaccinating behaviour. Proceedings of the Royal Society of London B: Biological Sciences, 272(1573):1669-1675, 2005.

[4] D. Bernoulli. Essai d'une nouvelle analyse de la mortalité causée par la petite vérole et des avantages de l'inoculation pour la prévenir. Histoire de l'Académie Royale des Sciences Paris, pages 1-45, 1760/1766.

[5] L. Bolzoni, E. Bonacini, C. Soresina, and M. Groppi. Time-optimal control strategies in SIR epidemic models. Mathematical Biosciences, 292:86-96, 2017. | DOI | MR | Zbl

[6] L. Bradley. Smallpox inoculation: an eighteenth century mathematical controversy (1971). In S. Haberman and T. A. Sibbett, editors, History of Actuarial Science, volume VIII, Multiple Decrement and Multiple State Models, page 1. William Pickering, London, 1995.

[7] B. Buonomo, G. Carbone, and A. D'Onofrio. Effect of seasonality on the dynamics of an imitation-based vaccination model with public health intervention. Mathematical Biosciences and Engineering, 15(1):299-321, 2018. | DOI | MR | Zbl

[8] B. Buonomo, R. Della Marca, and A. D'Onofrio. Optimal Public Health intervention in a behavioral vaccination model: the interplay between seasonality, behavior and latency period. Submitted. | DOI | MR

[9] B. Buonomo, A. D'Onofrio, and D. Lacitignola. Global stability of an SIR epidemic model with information dependent vaccination. Mathematical Biosciences, 216(1):9-16, 2008. | DOI | MR | Zbl

[10] B. Buonomo, A. D'Onofrio, and D. Lacitignola. Modeling of pseudo-rational exemption to vaccination for SEIR diseases. Journal of Mathematical Analysis and Applications, 404(2):385-398, 2013. | DOI | MR | Zbl

[11] Centers For Disease Control And Prevention And World Health Organization. History and epidemiology of global smallpox eradication. In Smallpox: disease, prevention, and intervention, 2014.

[12] C. Colombo and M. Diamanti. Il vaccino contro il vaiolo: la querelle Bernoulli-d'Alembert e il calcolo della probabilità. Lettera Matematica Pristem, 91, 2014.

[13] R. Della Marca. Optimal control of periodic epidemic models. Master's thesis, University of Naples Federico II, 2017.

[14] K. Dietz and J. Heesterbeek. Daniel Bernoulli's epidemiological model revisited. Mathematical Biosciences, 180(1-2):1-21, 2002. | DOI | MR | Zbl

[15] A. D'Onofrio, P. Manfredi, and P. Poletti. The interplay of public intervention and private choices in determining the outcome of vaccination programmes. PLoS One, 7(10):e45653, 2012.

[16] A. D'Onofrio, P. Manfredi, and E. Salinelli. Vaccinating behaviour, information, and the dynamics of SIR vaccine preventable diseases. Theoretical Population Biology, 71(3):301-317, 2007. | Zbl

[17] P. Fine, K. Eames, and D. L. Heymann. Herd immunity: a rough guide. Clinical Infectious Diseases, 52(7):911-916, 2011.

[18] H. W. Hethcote. The mathematics of infectious diseases. SIAM Review, 42(4):599-653, 2000. | DOI | MR | Zbl

[19] Istituto Superiore Di Sanità. Obbligo Vaccinale: Cos'È E Perché È Importante, 2017. http://www.epicentro.iss.it/temi/vaccinazioni/ObbligoVaccinale.asp.

[20] E. Jenner. An inquiry into the causes and effects of the variolae vaccinae: a disease discovered in some of the western counties of England, particularly Gloucestershire, and known by the name of the cow pox (1798). In The Three Original Publications on Vaccination Against Smallpox, volume XXXVIII, Part 4 of The Harvard Classics. P.F. Collier & Son, New York, 1909-14.

[21] W. O. Kermack and A. G. Mckendrick. A contribution to the mathematical theory of epidemics. In Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, volume 115, pages 700-721. The Royal Society, 1927. | Zbl

[22] P. MANFREDI and A. d'ONOFRIO, editors. Modeling the Interplay Between Human Behavior and the Spread of Infectious Diseases. Springer, New York, 2013. | DOI | MR | Zbl

[23] M. L. N. Mbah, J. Liu, C. T. Bauch, Y. I. Tekel, J. Medlock, L. A. Meyers, and A. P. Galvani. The impact of imitation on vaccination behavior in social contact networks. PLoS Computational Biology, 8(4):e1002469, 2012. | DOI | MR

[24] Ministère Des Solidarités Et De La Santé. 11 vaccins obligatoires en 2018, 2017 http://solidarites-sante.gouv.fr/prevention-en-sante/preserver-sa-sante/vaccination/vaccins-obligatoires/article/11-vaccins-obligatoires-en-2018-1e-projet-de-loi.

[25] P. Munz, I. Hudea, J. Imad, and R. J. Smith. When zombies attack!: mathematical modelling of an outbreak of zombie infection. Infectious Disease Modelling Research Progress, 4:133-150, 2009.

[26] J. Murray. Mathematical Biology. Springer, New York, Tokyo, 1989. | DOI | MR | Zbl

[27] H. Nishiura and G. Chowell. Early transmission dynamics of Ebola virus disease (EVD), West Africa, March to August 2014. Eurosurveillance, 19(36):20894, 2014.

[28] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko. The Mathematical Theory of Optimal Processes. New York. Wiley Interscience, 1962. | MR | Zbl

[29] Z. Wang, C. T. Bauch, S. Bhattacharyya, A. D'Onofrio, P. Manfredi, M. Perc, N. Perra, M. Salathé, and D. Zhao. Statistical physics of vaccination. Physical Report, 664:1-113, 2016. | DOI | MR | Zbl

[30] World Health Organization. Measles. Fact sheet, 2018. http://www.who.int/ mediacentre/factsheets/fs286/en/.