Biliardi matematici, caos e ciambelle “infinite”: perché i matematici “giocano” a biliardo, dai poligoni al modellodi Ehrenfest
Matematica, cultura e società, Série 1, Tome 3 (2018) no. 1, pp. 13-30.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

I biliardi matematici sono un'idealizzazione del gioco del biliardo. Molti modelli di sistemi fisici, ad esempio in meccanica e termodinamica, sono rappresentati da biliardi matematici. Dal punto di vista matematico, i biliardi costituiscono anche un modello molto ricco di comportamento caotico. Le proprietà matematiche che caratterizzano diversi gradi di caos dipendono fortemente dalla forma del tavolo da biliardo. In questo articolo introduttivo sui biliardi esploreremo soprattutto il comportamento delle traiettorie in certi biliardi poligonali (razionali ), sia finiti che infiniti (come il famoso modello di Ehrenfest ) e cercheremo di dare un'idea degli strumenti matematici usati per studiarli, dallo srotolamento alla rinormalizzazione.
Mathematical billiards are an idealization of the game of pool. Many systems in physics, for example in mechanics or thermodynamics, can be described by mathematical billiards. Billiards provide also a mathematical model of chaotic behaviour, which may display several different chaotic features. How much chaotic a billiard is, depends mostly on the shape of the billiard table. In this introductory article on billiards we will focus especially on the behaviour of trajectories in a class of polygonal billiards (rational ones), both bounded and infinite (such as the well known Ehrenfest model). We will try to convey some of the mathematical tools which were used to study chaotic features, such as unfolding and renormalization.
@article{RUMI_2018_1_3_1_a2,
     author = {Ulcigrai, Corinna},
     title = {Biliardi matematici, caos e ciambelle {\textquotedblleft}infinite{\textquotedblright}: perch\'e i matematici {\textquotedblleft}giocano{\textquotedblright} a biliardo, dai poligoni al modellodi {Ehrenfest}},
     journal = {Matematica, cultura e societ\`a},
     pages = {13--30},
     publisher = {mathdoc},
     volume = {Ser. 1, 3},
     number = {1},
     year = {2018},
     zbl = {1397.37041},
     mrnumber = {3821680},
     language = {it},
     url = {http://geodesic.mathdoc.fr/item/RUMI_2018_1_3_1_a2/}
}
TY  - JOUR
AU  - Ulcigrai, Corinna
TI  - Biliardi matematici, caos e ciambelle “infinite”: perché i matematici “giocano” a biliardo, dai poligoni al modellodi Ehrenfest
JO  - Matematica, cultura e società
PY  - 2018
SP  - 13
EP  - 30
VL  - 3
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RUMI_2018_1_3_1_a2/
LA  - it
ID  - RUMI_2018_1_3_1_a2
ER  - 
%0 Journal Article
%A Ulcigrai, Corinna
%T Biliardi matematici, caos e ciambelle “infinite”: perché i matematici “giocano” a biliardo, dai poligoni al modellodi Ehrenfest
%J Matematica, cultura e società
%D 2018
%P 13-30
%V 3
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RUMI_2018_1_3_1_a2/
%G it
%F RUMI_2018_1_3_1_a2
Ulcigrai, Corinna. Biliardi matematici, caos e ciambelle “infinite”: perché i matematici “giocano” a biliardo, dai poligoni al modellodi Ehrenfest. Matematica, cultura e società, Série 1, Tome 3 (2018) no. 1, pp. 13-30. http://geodesic.mathdoc.fr/item/RUMI_2018_1_3_1_a2/

[1] A. Avila and P. Hubert, Recurrence for the wind-tree model, to appear in Ann. Inst. H. Poincaré Anal. Non Linéaire.

[2] V. Delecroix and A. Zorich, Cries and whispers in wind-tree forests, preprint arXiv:1502.06405.

[3] V. Delecroix, P. Hubert and S. Lelièvre, Diffusion for the periodic wind-tree model, Ann. Sci. Éc. Norm. Supér. (4) 47 (2014), 1085-1110. | DOI | MR | Zbl

[4] A. Eskin, M. Mirzakhani and A. Mohammadi, Isolation, equidistribution and orbit closures for the SL(2,R) action on moduli space, Ann. of Math. (2) 182 (2015), 673-721. | DOI | MR | Zbl

[5] C. Dettmann, Diffusion in the Lorentz Gas, Comm. Theoretical Physics 62 (2014), no. 4, 521-540. | DOI | MR | Zbl

[6] K. Frączek and C. Ulcigrai, Non-ergodic Z-periodic billiards and infinite translation surfaces, Invent. Math. 197 (2014), 241-298. | DOI | MR | Zbl

[7] K. Frączek and C. Ulcigrai, Ergodic directions for billiards in a strip with periodically located obstacles, Comm. Math. Phys. 327 (2014), no. 2, 643-663. | DOI | MR | Zbl

[8] M. Friberger, Chaos on the mathematical table, Plus Magazine (2014) https://plus.maths.org/content/chaos-billiard-table

[9] M. Friberger, Caos sul tavolo da biliardo, traduzione di A. Betti, http://www.xlatangente.it/upload/files/XlaTangente_04_online_ulcigrai.pdf

[10] M. Friberger, Playing billiards on doughnuts, Plus Magazine (2014) https://plus.maths.org/content/billiards-donuts

[11] S. Glashow and L. Mittag, Three rods on a ring and the triangular billiard, J. Statist. Phys. 87 (1997), no. 3-4, 937-941. | DOI | MR | Zbl

[12] S. Graffi, M. Degli Esposti, Fisica Matematica Discreta, Unitext (2008).

[13] P. Hooper, P. Hubert and B. Weiss, Dynamics on the infinite staircase, Discrete Contin. Dyn. Syst. 33 (2013), no. 9, 4341-4347. | DOI | MR | Zbl

[14] P. Hooper and R. Schwartz, Billiards in nearly isosceles triangles., J. Mod. Dyn. 3 (2009), no. 2, 159-231. | DOI | MR | Zbl

[15] P. Hooper and R. Schwartz, program McBilliards available at http://www.math.brown.edu/res/Billiards/index.html

[16] S. Kerckhoff, H. Masur and J. Smillie, Ergodicity of billiard flows and quadratic differentials, Ann. of Math. (2) 124 (1986), 293-311. | DOI | MR | Zbl

[17] S. Kerckhoff, H. Masur and J. Smillie, Ergodicity of billiard flows and quadratic differentials, Ann. of Math. (2) 124 (1986), 293-311. | DOI | MR | Zbl

[18] C. Liverani Transport in partially hyperbolic fast-slow systems, preprint arxiv:1803.06137.

[19] J. Marklof The low-density limit of the Lorentz gas: periodic, aperiodic and random, Proceedings of the International Congress of Mathematicians, Seoul 2014. Vol. III, 623-646, Kyung Moon Sa, Seoul, 2014. | MR | Zbl

[20] H. Masur, Interval exchange transformations and measured foliations, Ann. of Math. (2) 115 (1982), no. 1, 169-200. | DOI | MR | Zbl

[21] H. Masur and J. Smillie, Hausdorff dimension of sets of nonergodic measured foliations, Ann. of Math. (2) 134 (1991), no. 3, 455-543. | DOI | MR | Zbl

[22] H. Masur and S. Tabachnikov, Rational billiards and flat structures, in Handbook of dynamical systems, Vol. 1A, 1015-1089, North-Holland, Amsterdam, 2002. | DOI | MR | Zbl

[23] C. Matheus, Diffusion in Ehrenfest wind-tree model, in the blog Disquisitiones Mathematicae (posted on November 18, 2011) https://matheuscmss.wordpress.com/2011/11/18/diffusion-in-ehrenfest-wind-tree-model/

[24] D. Ralston and S. Troubetzkoy, Ergodic infinite group extensions of geodesic flows on translation surfaces, J. Mod. Dyn. 6 (2012), no. 4, 477-497. | DOI | MR | Zbl

[25] J. Smillie, The dynamics of billiard flows in rational polygons, Chapter IV in Encyclopaedia of Mathematical Sciences, 100. Mathematical Physics, I. Springer-Verlag, Berlin, 2000, 360-382. | Zbl

[26] S. Tabachnikov, Geometry and Billiards, Student Mathematical Library, vol. 30, American Mathematical Society, Providence, RI, 2005. | DOI | MR

[27] C. Ulcigrai, Billiards, Pretzels... and Chaos and Mathematical billiards and Flows on Surfaces slides presentations, available on webpage https://people.maths.bris.ac.uk/ maxcu/Slides.html | MR

[28] W. Veech, Gauss measures for transformations on the space of interval exchange maps, Ann. of Math. (2) 115 (1982), no. 1, 201-242. | DOI | MR | Zbl

[29] A. Zorich, Flat surfaces, Frontiers in number theory, physics, and geometry. I, 437-583, Springer, Berlin, 2006 (preprint arXiv:math/0609392 available on https://arxiv.org/abs/math/0609392).

[30] A. Zorich, Le théorème de la baguette magique de A. Eskin et M. Mirzakhani, Gazette des Mathématiciens no. 142 (2014), edited by SMF, English translation The Magic Wand Theorem of A. Eskin and M. Mirzakhani available on arXiv https://arxiv.org/pdf/1502.05654.pdf | MR