Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{RUMI_2018_1_3_1_a2, author = {Ulcigrai, Corinna}, title = {Biliardi matematici, caos e ciambelle {\textquotedblleft}infinite{\textquotedblright}: perch\'e i matematici {\textquotedblleft}giocano{\textquotedblright} a biliardo, dai poligoni al modellodi {Ehrenfest}}, journal = {Matematica, cultura e societ\`a}, pages = {13--30}, publisher = {mathdoc}, volume = {Ser. 1, 3}, number = {1}, year = {2018}, zbl = {1397.37041}, mrnumber = {3821680}, language = {it}, url = {http://geodesic.mathdoc.fr/item/RUMI_2018_1_3_1_a2/} }
TY - JOUR AU - Ulcigrai, Corinna TI - Biliardi matematici, caos e ciambelle “infinite”: perché i matematici “giocano” a biliardo, dai poligoni al modellodi Ehrenfest JO - Matematica, cultura e società PY - 2018 SP - 13 EP - 30 VL - 3 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RUMI_2018_1_3_1_a2/ LA - it ID - RUMI_2018_1_3_1_a2 ER -
%0 Journal Article %A Ulcigrai, Corinna %T Biliardi matematici, caos e ciambelle “infinite”: perché i matematici “giocano” a biliardo, dai poligoni al modellodi Ehrenfest %J Matematica, cultura e società %D 2018 %P 13-30 %V 3 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/RUMI_2018_1_3_1_a2/ %G it %F RUMI_2018_1_3_1_a2
Ulcigrai, Corinna. Biliardi matematici, caos e ciambelle “infinite”: perché i matematici “giocano” a biliardo, dai poligoni al modellodi Ehrenfest. Matematica, cultura e società, Série 1, Tome 3 (2018) no. 1, pp. 13-30. http://geodesic.mathdoc.fr/item/RUMI_2018_1_3_1_a2/
[1] Recurrence for the wind-tree model, to appear in Ann. Inst. H. Poincaré Anal. Non Linéaire.
and ,[2] Cries and whispers in wind-tree forests, preprint arXiv:1502.06405.
and ,[3] Diffusion for the periodic wind-tree model, Ann. Sci. Éc. Norm. Supér. (4) 47 (2014), 1085-1110. | DOI | MR | Zbl
, and ,[4] Isolation, equidistribution and orbit closures for the SL(2,R) action on moduli space, Ann. of Math. (2) 182 (2015), 673-721. | DOI | MR | Zbl
, and ,[5] Diffusion in the Lorentz Gas, Comm. Theoretical Physics 62 (2014), no. 4, 521-540. | DOI | MR | Zbl
,[6] Non-ergodic Z-periodic billiards and infinite translation surfaces, Invent. Math. 197 (2014), 241-298. | DOI | MR | Zbl
and ,[7] Ergodic directions for billiards in a strip with periodically located obstacles, Comm. Math. Phys. 327 (2014), no. 2, 643-663. | DOI | MR | Zbl
and ,[8] Chaos on the mathematical table, Plus Magazine (2014) https://plus.maths.org/content/chaos-billiard-table
,[9] Caos sul tavolo da biliardo, traduzione di A. Betti, http://www.xlatangente.it/upload/files/XlaTangente_04_online_ulcigrai.pdf
,[10] Playing billiards on doughnuts, Plus Magazine (2014) https://plus.maths.org/content/billiards-donuts
,[11] Three rods on a ring and the triangular billiard, J. Statist. Phys. 87 (1997), no. 3-4, 937-941. | DOI | MR | Zbl
and ,[12] Fisica Matematica Discreta, Unitext (2008).
, ,[13] Dynamics on the infinite staircase, Discrete Contin. Dyn. Syst. 33 (2013), no. 9, 4341-4347. | DOI | MR | Zbl
, and ,[14] Billiards in nearly isosceles triangles., J. Mod. Dyn. 3 (2009), no. 2, 159-231. | DOI | MR | Zbl
and ,[15]
and , program McBilliards available at http://www.math.brown.edu/res/Billiards/index.html[16] Ergodicity of billiard flows and quadratic differentials, Ann. of Math. (2) 124 (1986), 293-311. | DOI | MR | Zbl
, and ,[17] Ergodicity of billiard flows and quadratic differentials, Ann. of Math. (2) 124 (1986), 293-311. | DOI | MR | Zbl
, and ,[18] Transport in partially hyperbolic fast-slow systems, preprint arxiv:1803.06137.
[19] The low-density limit of the Lorentz gas: periodic, aperiodic and random, Proceedings of the International Congress of Mathematicians, Seoul 2014. Vol. III, 623-646, Kyung Moon Sa, Seoul, 2014. | MR | Zbl
[20] Interval exchange transformations and measured foliations, Ann. of Math. (2) 115 (1982), no. 1, 169-200. | DOI | MR | Zbl
,[21] Hausdorff dimension of sets of nonergodic measured foliations, Ann. of Math. (2) 134 (1991), no. 3, 455-543. | DOI | MR | Zbl
and ,[22] Rational billiards and flat structures, in Handbook of dynamical systems, Vol. 1A, 1015-1089, North-Holland, Amsterdam, 2002. | DOI | MR | Zbl
and ,[23] Diffusion in Ehrenfest wind-tree model, in the blog Disquisitiones Mathematicae (posted on November 18, 2011) https://matheuscmss.wordpress.com/2011/11/18/diffusion-in-ehrenfest-wind-tree-model/
,[24] Ergodic infinite group extensions of geodesic flows on translation surfaces, J. Mod. Dyn. 6 (2012), no. 4, 477-497. | DOI | MR | Zbl
and ,[25] The dynamics of billiard flows in rational polygons, Chapter IV in Encyclopaedia of Mathematical Sciences, 100. Mathematical Physics, I. Springer-Verlag, Berlin, 2000, 360-382. | Zbl
,[26] Geometry and Billiards, Student Mathematical Library, vol. 30, American Mathematical Society, Providence, RI, 2005. | DOI | MR
,[27] Billiards, Pretzels... and Chaos and Mathematical billiards and Flows on Surfaces slides presentations, available on webpage https://people.maths.bris.ac.uk/ maxcu/Slides.html | MR
,[28] Gauss measures for transformations on the space of interval exchange maps, Ann. of Math. (2) 115 (1982), no. 1, 201-242. | DOI | MR | Zbl
,[29] Flat surfaces, Frontiers in number theory, physics, and geometry. I, 437-583, Springer, Berlin, 2006 (preprint arXiv:math/0609392 available on https://arxiv.org/abs/math/0609392).
,[30] Le théorème de la baguette magique de A. Eskin et M. Mirzakhani, Gazette des Mathématiciens no. 142 (2014), edited by SMF, English translation The Magic Wand Theorem of A. Eskin and M. Mirzakhani available on arXiv https://arxiv.org/pdf/1502.05654.pdf | MR
,