Sistemi integrabili infinito dimensionali e loro perturbazioni
Matematica, cultura e società, Série 1, Tome 2 (2017) no. 3, pp. 309-326

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

The last 50 years have seen enourmous advances in the comprehension of the qualitative behaviour of solutions of nonlinear partial differential equations. In particular the extension to this field of the methods of Hamiltonian mechanichs has been the key for the discovery of a full class of equations called ``integrable'', whose solutions always have a recurrent behaviour and has also allowed to shed some light on the solutions of perturbations of integrable equations, which can display both a recurrent and a turbulent behaviour. In this paper we will present some of the results of the theory from its beginning to our days and we will discuss some of the most important open problems.
@article{RUMI_2017_1_2_3_a5,
     author = {Bambusi, Dario and Maspero, Alberto},
     title = {Sistemi integrabili infinito dimensionali e loro perturbazioni},
     journal = {Matematica, cultura e societ\`a},
     pages = {309--326},
     publisher = {mathdoc},
     volume = {Ser. 1, 2},
     number = {3},
     year = {2017},
     mrnumber = {3753847},
     language = {it},
     url = {http://geodesic.mathdoc.fr/item/RUMI_2017_1_2_3_a5/}
}
TY  - JOUR
AU  - Bambusi, Dario
AU  - Maspero, Alberto
TI  - Sistemi integrabili infinito dimensionali e loro perturbazioni
JO  - Matematica, cultura e società
PY  - 2017
SP  - 309
EP  - 326
VL  - 2
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RUMI_2017_1_2_3_a5/
LA  - it
ID  - RUMI_2017_1_2_3_a5
ER  - 
%0 Journal Article
%A Bambusi, Dario
%A Maspero, Alberto
%T Sistemi integrabili infinito dimensionali e loro perturbazioni
%J Matematica, cultura e società
%D 2017
%P 309-326
%V 2
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RUMI_2017_1_2_3_a5/
%G it
%F RUMI_2017_1_2_3_a5
Bambusi, Dario; Maspero, Alberto. Sistemi integrabili infinito dimensionali e loro perturbazioni. Matematica, cultura e società, Série 1, Tome 2 (2017) no. 3, pp. 309-326. http://geodesic.mathdoc.fr/item/RUMI_2017_1_2_3_a5/