Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{RUMI_2017_1_2_3_a5, author = {Bambusi, Dario and Maspero, Alberto}, title = {Sistemi integrabili infinito dimensionali e loro perturbazioni}, journal = {Matematica, cultura e societ\`a}, pages = {309--326}, publisher = {mathdoc}, volume = {Ser. 1, 2}, number = {3}, year = {2017}, zbl = {1350.37076}, mrnumber = {3753847}, language = {it}, url = {http://geodesic.mathdoc.fr/item/RUMI_2017_1_2_3_a5/} }
TY - JOUR AU - Bambusi, Dario AU - Maspero, Alberto TI - Sistemi integrabili infinito dimensionali e loro perturbazioni JO - Matematica, cultura e società PY - 2017 SP - 309 EP - 326 VL - 2 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RUMI_2017_1_2_3_a5/ LA - it ID - RUMI_2017_1_2_3_a5 ER -
Bambusi, Dario; Maspero, Alberto. Sistemi integrabili infinito dimensionali e loro perturbazioni. Matematica, cultura e società, Série 1, Tome 2 (2017) no. 3, pp. 309-326. http://geodesic.mathdoc.fr/item/RUMI_2017_1_2_3_a5/
[1] Metodi Matematici della Meccanica Classica. Editori Riuniti, 1979.
.[2] Proof of a theorem of A. N. Kolmogorov on the preservation of conditionally periodic motions under a small perturbation of the Hamiltonian. Uspehi Mat. Nauk, 18(5 (113)):13-40, 1963. | MR
.[3] Instability of dynamical systems with many degrees of freedom. Dokl. Akad. Nauk SSSR, 156:9-12, 1964. | MR
.[4] for quasilinear and fully nonlinear forced perturbations of Airy equation. Math. Ann., 359(1-2):471-536, 2014. | DOI | MR | Zbl
, , and . KAM[5] Almost global existence for Hamiltonian semilinear Klein-Gordon equations with small Cauchy data on Zoll manifolds. Comm. Pure Appl. Math., 60(11):1665-1690, 2007. | DOI | MR | Zbl
, , , and .[6] Birkhoff normal form for partial differential equations with tame modulus. Duke Math. J., 135(3):507-567, 2006. | DOI | MR | Zbl
and .[7] On the symplectic structure of the phase space for periodic KdV, Toda, and defocusing NLS. Duke Math. J., 79(3):549-604, 1995. | DOI | MR | Zbl
, , , and .[8] Arnold diffusion in arbitrary degrees of freedom and normally hyperbolic invariant cylinders. Acta Math., 217(1):1-79, 2016. | DOI | MR | Zbl
, , and .[9] An abstract Nash-Moser theorem and quasi-periodic solutions for NLW and NLS on compact Lie groups and homogeneous manifolds. Comm. Math. Phys., 334(3):1413-1454, 2015. | DOI | MR | Zbl
, , and .[10] Construction of periodic solutions of nonlinear wave equations in higher dimension. Geom. Funct. Anal., 5(4):629-639, 1995. | fulltext EuDML | DOI | MR | Zbl
.[11] Quasi-periodic solutions of Hamiltonian perturbations of 2D linear Schrödinger equations. Ann. of Math. (2), 148(2):363-439, 1998. | DOI | MR | Zbl
.[12] Green's function estimates for lattice Schrödinger operators and applications, volume 158 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 2005. | DOI | MR
.[13] Essai sur la théorie des eaux courantes. Mémoires présentées par divers savants à l'Académie des Sciences. Imprimerie Nationale, 1877.
.[14] Transfer of energy to high frequencies in the cubic defocusing nonlinear Schrödinger equation. Invent. Math., 181(1):39-113, 2010. | DOI | MR | Zbl
, , , , and .[15] The mathematical experience. Birkhäuser Boston, Inc., Boston, MA, study edition, 1995. With an introduction by Gian-Carlo Rota. | MR | Zbl
, , and .[16] Quasi-linear perturbations of Hamiltonian Klein-Gordon equations on spheres. Mem. Amer. Math. Soc., 234(1103):vi+80, 2015. | DOI | MR | Zbl
.[17] A periodic problem for the Korteweg-de Vries equation in a class of short-range potentials. Funkcional. Anal. i Priložen., 9(3):41-51, 1975. | MR
.[18] Nonlinear equations of Korteweg-de Vries type, finiteband linear operators and Abelian varieties. Uspehi Mat. Nauk, 31(1(187)):55-136, 1976. | MR | Zbl
, , and .[19] Periodic and conditionally periodic analogs of the many-soliton solutions of the Korteweg-de Vries equation. Ž. Èksper. Teoret. Fiz., Z 67(6):2131-2144, 1974. | MR
and .[20] for the nonlinear Schrödinger equation. Ann. of Math. (2), 172(1):371-435, 2010. | DOI | MR | Zbl
and . KAM[21] Canonically conjugate variables for the Korteweg-de Vries equation and the Toda lattice with periodic boundary conditions. Progr. Theoret. Phys., 55(2):438-456, 1976. | DOI | MR | Zbl
and .[22] Gaps and bands of onedimensional periodic Schrödinger operators. Comment. Math. Helv., 59(2):258-312, 1984. | fulltext EuDML | DOI | MR | Zbl
and .[23] The cubic Szego equation. Ann. Sci. Éc. Norm. Supér. (4), 43(5):761-810, 2010. | fulltext EuDML | MR | Zbl
and .[24] Quasiperiodic motions and stability of the solar system. I. From epicycles to Poincaré's homoclinic point. Boll. Unione Mat. Ital. Sez. A Mat. Soc. Cult. (8), 10(1):55-83, 2007. | fulltext bdim | fulltext EuDML | MR | Zbl
.[25] Quasiperiodic motions and stability of the solar system. II. From Kolmogorov's tori to exponential stability. Boll. Unione Mat. Ital. Sez. A Mat. Soc. Cult. (8), 10(3):465-495, 614, 2007. | fulltext bdim | fulltext EuDML | MR
.[26] Growth of Sobolev norms for the analytic NLS on $\mathbb{T}^2$. Adv. Math., 301:615-692, 2016. | DOI | MR | Zbl
, , and .[27] Modified scattering for the cubic Schrödinger equation on product spaces and applications. Forum of Math. Pi, 3, 2015. | DOI | MR | Zbl
, , and .[28] Estimates of the stability intervals for Hill's equation. Proc. Amer. Math. Soc., 14:930-932, 1963. | DOI | MR | Zbl
.[29] Fibration of the phase space for the Korteweg-de Vries equation. Ann. Inst. Fourier (Grenoble), 41(3):539-575, 1991. | fulltext EuDML | MR | Zbl
.[30] KAM & KdV. Springer, 2003. | DOI | MR
and .[31] Global wellposedness of KdV in $H^{-1}(\mathbb{T}; \mathbb{R})$. Duke Math. J., 135(2):327-360, 2006. | DOI | MR | Zbl
and .[32] On conservation of conditionally periodic motions for a small change in Hamilton's function. Dokl. Akad. Nauk SSSR (N.S.), 98:527-530, 1954. | MR | Zbl
.[33] Xli. on the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. Philosophical Magazine Series 5, 39(240):422-443, 1895. | DOI | MR | Zbl
and .[34] Hamiltonian perturbations of infinite-dimensional linear systems with imaginary spectrum. Funktsional. Anal. i Prilozhen., 21(3):22-37, 95, 1987. | MR | Zbl
.[35] Nearly integrable infinite-dimensional Hamiltonian systems, volume 1556 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1993. | DOI | MR | Zbl
.[36] Integrals of nonlinear equations of evolution and solitary waves. Comm. Pure Appl. Math., 21:467-490, 1968. | DOI | MR | Zbl
.[37] A characterization of the spectrum of hill's operator. Mathematics of the USSR-Sbornik, 26(4):493, 1975. | MR
and .[38] Sturm-Liouville operators and applications, volume 22 of Operator Theory: Advances and Applications. Birkhäuser Verlag, Basel, 1986. Translated from the Russian by A. Iacob. | DOI | MR
.[39] Hill's operator and hyperelliptic function theory in the presence of infinitely many branch points. Comm. Pure Appl. Math., 29(2):143-226, 1976. | DOI | MR | Zbl
and .[40] On invariant curves of area-preserving mappings of an annulus. Nachr. Akad. Wiss. Göttingen Math.Phys. Kl. II, 1962:1-20, 1962. | MR | Zbl
.[41] Behavior of hamiltonian systems close to integrable. Functional Analysis and Its Applications, 5(4):338-339, 1971. | MR | Zbl
.[42] Les méthodes nouvelles de la mécanique céleste: Solutions périodiques. Non-existence des intégrales uniformes. Solutions asymptotiques. 1892. Les méthodes nouvelles de la mécanique céleste. Gauthier-Villars et fils, 1892. | MR | Zbl
.[43] A KAM-theorem for some nonlinear partial differential equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 23(1):119-148, 1996. | fulltext EuDML | MR
.[44] The long-wave limit for the water wave problem. I. The case of zero surface tension. Comm. Pure Appl. Math., 53(12):1475-1535, 2000. | DOI | MR | Zbl
and .[45] Report on waves, Fourteenth meeting of the British Association for the Advancement of Science, 1844.
.[46] The inverse problem for periodic potentials. Comm. Pure Appl. Math., 30(3):321-337, 1977. | DOI | MR | Zbl
.[47] Periodic and quasi-periodic solutions of nonlinear wave equations via KAM theory. Comm. Math. Phys., 127(3):479-528, 1990. | MR | Zbl
.[48] Interaction of "solitons" in a collisionless plasma and the recurrence of initial states. Phys. Rev. Lett., 15:240-243, Aug 1965. | Zbl
and .