Sistemi integrabili infinito dimensionali e loro perturbazioni
Matematica, cultura e società, Série 1, Tome 2 (2017) no. 3, pp. 309-326.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

Durante gli ultimi 50 anni, sono stati fatti enormi progressi nella comprensione del comportamento qualitativo di equazioni a derivate parziali non lineari. In modo specifico, l'estensione a questo ambito dei metodi della meccanica Hamiltoniana ha permesso dapprima di capire che esiste un'intera classe di equazioni, chiamate ``integrabili'', le cui soluzioni hanno sempre carattere ricorrente, e successivamente di cominciare a comprendere ciò che avviene quando queste equazioni sono perturbate e danno luogo a sistemi in cui possono coesistere comportamenti regolari e comportamenti turbolenti. Nel nostro articolo, presenteremo alcuni dei risultati di questa teoria, a partire dalle sue origini fino a oggi, e discuteremo alcuni dei più importanti problemi aperti.
The last 50 years have seen enourmous advances in the comprehension of the qualitative behaviour of solutions of nonlinear partial differential equations. In particular the extension to this field of the methods of Hamiltonian mechanichs has been the key for the discovery of a full class of equations called ``integrable'', whose solutions always have a recurrent behaviour and has also allowed to shed some light on the solutions of perturbations of integrable equations, which can display both a recurrent and a turbulent behaviour. In this paper we will present some of the results of the theory from its beginning to our days and we will discuss some of the most important open problems.
@article{RUMI_2017_1_2_3_a5,
     author = {Bambusi, Dario and Maspero, Alberto},
     title = {Sistemi integrabili infinito dimensionali e loro perturbazioni},
     journal = {Matematica, cultura e societ\`a},
     pages = {309--326},
     publisher = {mathdoc},
     volume = {Ser. 1, 2},
     number = {3},
     year = {2017},
     zbl = {1350.37076},
     mrnumber = {3753847},
     language = {it},
     url = {http://geodesic.mathdoc.fr/item/RUMI_2017_1_2_3_a5/}
}
TY  - JOUR
AU  - Bambusi, Dario
AU  - Maspero, Alberto
TI  - Sistemi integrabili infinito dimensionali e loro perturbazioni
JO  - Matematica, cultura e società
PY  - 2017
SP  - 309
EP  - 326
VL  - 2
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RUMI_2017_1_2_3_a5/
LA  - it
ID  - RUMI_2017_1_2_3_a5
ER  - 
%0 Journal Article
%A Bambusi, Dario
%A Maspero, Alberto
%T Sistemi integrabili infinito dimensionali e loro perturbazioni
%J Matematica, cultura e società
%D 2017
%P 309-326
%V 2
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RUMI_2017_1_2_3_a5/
%G it
%F RUMI_2017_1_2_3_a5
Bambusi, Dario; Maspero, Alberto. Sistemi integrabili infinito dimensionali e loro perturbazioni. Matematica, cultura e società, Série 1, Tome 2 (2017) no. 3, pp. 309-326. http://geodesic.mathdoc.fr/item/RUMI_2017_1_2_3_a5/

[1] V. I. Arnold. Metodi Matematici della Meccanica Classica. Editori Riuniti, 1979.

[2] V. I. Arnold. Proof of a theorem of A. N. Kolmogorov on the preservation of conditionally periodic motions under a small perturbation of the Hamiltonian. Uspehi Mat. Nauk, 18(5 (113)):13-40, 1963. | MR

[3] V. I. Arnold. Instability of dynamical systems with many degrees of freedom. Dokl. Akad. Nauk SSSR, 156:9-12, 1964. | MR

[4] P. Baldi, M. Berti, and R. Montalto. KAM for quasilinear and fully nonlinear forced perturbations of Airy equation. Math. Ann., 359(1-2):471-536, 2014. | DOI | MR | Zbl

[5] D. Bambusi, J.-M. Delort, B. Grébert, and J. Szeftel. Almost global existence for Hamiltonian semilinear Klein-Gordon equations with small Cauchy data on Zoll manifolds. Comm. Pure Appl. Math., 60(11):1665-1690, 2007. | DOI | MR | Zbl

[6] D. Bambusi and B. Grébert. Birkhoff normal form for partial differential equations with tame modulus. Duke Math. J., 135(3):507-567, 2006. | DOI | MR | Zbl

[7] D. Bättig, A. M. Bloch, J.-C. Guillot, and T. Kappeler. On the symplectic structure of the phase space for periodic KdV, Toda, and defocusing NLS. Duke Math. J., 79(3):549-604, 1995. | DOI | MR | Zbl

[8] P. Bernard, V. Kaloshin, and K. Zhang. Arnold diffusion in arbitrary degrees of freedom and normally hyperbolic invariant cylinders. Acta Math., 217(1):1-79, 2016. | DOI | MR | Zbl

[9] M. Berti, L. Corsi, and M. Procesi. An abstract Nash-Moser theorem and quasi-periodic solutions for NLW and NLS on compact Lie groups and homogeneous manifolds. Comm. Math. Phys., 334(3):1413-1454, 2015. | DOI | MR | Zbl

[10] J. Bourgain. Construction of periodic solutions of nonlinear wave equations in higher dimension. Geom. Funct. Anal., 5(4):629-639, 1995. | fulltext EuDML | DOI | MR | Zbl

[11] J. Bourgain. Quasi-periodic solutions of Hamiltonian perturbations of 2D linear Schrödinger equations. Ann. of Math. (2), 148(2):363-439, 1998. | DOI | MR | Zbl

[12] J. Bourgain. Green's function estimates for lattice Schrödinger operators and applications, volume 158 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 2005. | DOI | MR

[13] J. Boussinesq. Essai sur la théorie des eaux courantes. Mémoires présentées par divers savants à l'Académie des Sciences. Imprimerie Nationale, 1877.

[14] J. Colliander, M. Keel, G. Staffilani, H. Takaoka, and T. Tao. Transfer of energy to high frequencies in the cubic defocusing nonlinear Schrödinger equation. Invent. Math., 181(1):39-113, 2010. | DOI | MR | Zbl

[15] P. J. Davis, R. Hersh, and E. A. Marchisotto. The mathematical experience. Birkhäuser Boston, Inc., Boston, MA, study edition, 1995. With an introduction by Gian-Carlo Rota. | MR | Zbl

[16] J.-M. Delort. Quasi-linear perturbations of Hamiltonian Klein-Gordon equations on spheres. Mem. Amer. Math. Soc., 234(1103):vi+80, 2015. | DOI | MR | Zbl

[17] B. A. Dubrovin. A periodic problem for the Korteweg-de Vries equation in a class of short-range potentials. Funkcional. Anal. i Priložen., 9(3):41-51, 1975. | MR

[18] B. A. Dubrovin, V. B. Matveev, and S. P. Novikov. Nonlinear equations of Korteweg-de Vries type, finiteband linear operators and Abelian varieties. Uspehi Mat. Nauk, 31(1(187)):55-136, 1976. | MR | Zbl

[19] B. A. Dubrovin and S. P. Novikov. Periodic and conditionally periodic analogs of the many-soliton solutions of the Korteweg-de Vries equation. Ž. Èksper. Teoret. Fiz., Z 67(6):2131-2144, 1974. | MR

[20] L. H. Eliasson and S. B. Kuksin. KAM for the nonlinear Schrödinger equation. Ann. of Math. (2), 172(1):371-435, 2010. | DOI | MR | Zbl

[21] H. Flaschka and D. W. Mclaughlin. Canonically conjugate variables for the Korteweg-de Vries equation and the Toda lattice with periodic boundary conditions. Progr. Theoret. Phys., 55(2):438-456, 1976. | DOI | MR | Zbl

[22] J. Garnett and E. Trubowitz. Gaps and bands of onedimensional periodic Schrödinger operators. Comment. Math. Helv., 59(2):258-312, 1984. | fulltext EuDML | DOI | MR | Zbl

[23] P. Gérard and S. Grellier. The cubic Szego equation. Ann. Sci. Éc. Norm. Supér. (4), 43(5):761-810, 2010. | fulltext EuDML | MR | Zbl

[24] A. Giorgilli. Quasiperiodic motions and stability of the solar system. I. From epicycles to Poincaré's homoclinic point. Boll. Unione Mat. Ital. Sez. A Mat. Soc. Cult. (8), 10(1):55-83, 2007. | fulltext bdim | fulltext EuDML | MR | Zbl

[25] A. Giorgilli. Quasiperiodic motions and stability of the solar system. II. From Kolmogorov's tori to exponential stability. Boll. Unione Mat. Ital. Sez. A Mat. Soc. Cult. (8), 10(3):465-495, 614, 2007. | fulltext bdim | fulltext EuDML | MR

[26] M. Guardia, E. Haus, and M. Procesi. Growth of Sobolev norms for the analytic NLS on $\mathbb{T}^2$. Adv. Math., 301:615-692, 2016. | DOI | MR | Zbl

[27] Z. Hani, P. Pausader, N. Tzvetkov and N. Visciglia. Modified scattering for the cubic Schrödinger equation on product spaces and applications. Forum of Math. Pi, 3, 2015. | DOI | MR | Zbl

[28] H. Hochstadt. Estimates of the stability intervals for Hill's equation. Proc. Amer. Math. Soc., 14:930-932, 1963. | DOI | MR | Zbl

[29] T. Kappeler. Fibration of the phase space for the Korteweg-de Vries equation. Ann. Inst. Fourier (Grenoble), 41(3):539-575, 1991. | fulltext EuDML | MR | Zbl

[30] T. Kappeler and J. Pöschel. KAM & KdV. Springer, 2003. | DOI | MR

[31] T. Kappeler and P. Topalov. Global wellposedness of KdV in $H^{-1}(\mathbb{T}; \mathbb{R})$. Duke Math. J., 135(2):327-360, 2006. | DOI | MR | Zbl

[32] A. N. Kolmogorov. On conservation of conditionally periodic motions for a small change in Hamilton's function. Dokl. Akad. Nauk SSSR (N.S.), 98:527-530, 1954. | MR | Zbl

[33] D. D. J. Korteweg and D. G. De Vries. Xli. on the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. Philosophical Magazine Series 5, 39(240):422-443, 1895. | DOI | MR | Zbl

[34] S. B. Kuksin. Hamiltonian perturbations of infinite-dimensional linear systems with imaginary spectrum. Funktsional. Anal. i Prilozhen., 21(3):22-37, 95, 1987. | MR | Zbl

[35] S. B. Kuksin. Nearly integrable infinite-dimensional Hamiltonian systems, volume 1556 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1993. | DOI | MR | Zbl

[36] P. D. Lax. Integrals of nonlinear equations of evolution and solitary waves. Comm. Pure Appl. Math., 21:467-490, 1968. | DOI | MR | Zbl

[37] V. A. Marcenko and I. V. Ostrovski. A characterization of the spectrum of hill's operator. Mathematics of the USSR-Sbornik, 26(4):493, 1975. | MR

[38] V. A. Marchenko. Sturm-Liouville operators and applications, volume 22 of Operator Theory: Advances and Applications. Birkhäuser Verlag, Basel, 1986. Translated from the Russian by A. Iacob. | DOI | MR

[39] H. P. Mckean and E. Trubowitz. Hill's operator and hyperelliptic function theory in the presence of infinitely many branch points. Comm. Pure Appl. Math., 29(2):143-226, 1976. | DOI | MR | Zbl

[40] J. Moser. On invariant curves of area-preserving mappings of an annulus. Nachr. Akad. Wiss. Göttingen Math.Phys. Kl. II, 1962:1-20, 1962. | MR | Zbl

[41] N. N. Nekhoroshev. Behavior of hamiltonian systems close to integrable. Functional Analysis and Its Applications, 5(4):338-339, 1971. | MR | Zbl

[42] H. Poincaré. Les méthodes nouvelles de la mécanique céleste: Solutions périodiques. Non-existence des intégrales uniformes. Solutions asymptotiques. 1892. Les méthodes nouvelles de la mécanique céleste. Gauthier-Villars et fils, 1892. | MR | Zbl

[43] J. Pöschel. A KAM-theorem for some nonlinear partial differential equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 23(1):119-148, 1996. | fulltext EuDML | MR

[44] G. Schneider and C. E. Wayne. The long-wave limit for the water wave problem. I. The case of zero surface tension. Comm. Pure Appl. Math., 53(12):1475-1535, 2000. | DOI | MR | Zbl

[45] J. Scott Russell. Report on waves, Fourteenth meeting of the British Association for the Advancement of Science, 1844.

[46] E. Trubowitz. The inverse problem for periodic potentials. Comm. Pure Appl. Math., 30(3):321-337, 1977. | DOI | MR | Zbl

[47] C. E. Wayne. Periodic and quasi-periodic solutions of nonlinear wave equations via KAM theory. Comm. Math. Phys., 127(3):479-528, 1990. | MR | Zbl

[48] N. J. Zabusky and M. D. Kruskal. Interaction of "solitons" in a collisionless plasma and the recurrence of initial states. Phys. Rev. Lett., 15:240-243, Aug 1965. | Zbl