La Congettura di Poincaré e il Flusso di Ricci
Matematica, cultura e società, Série 1, Tome 2 (2017) no. 3, pp. 245-289.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

Si intende presentare, almeno in parte, l'imponente intreccio di idee, tecniche e acquisizioni concettuali che si è sviluppato intorno alla congettura di Poincaré, dalla sua formulazione agli inizi del secolo scorso fino alla soluzione data da Grisha Perelman agli inizi del nuovo millennio, portando a compimento il programma basato sullo studio del flusso di Ricci di metriche riemanniane su una data 3-varietà, delineato e sviluppato da Richard Hamilton dagli anni '80. Pur nei limiti e nelle possibilità di un articolo di rassegna, si è voluto presentare in modo matematicamente compiuto almeno alcune delle nozioni ed idee cruciali, a partire dalla formulazione stessa della congettura, disponendo soltanto di nozioni di base di algebra lineare, geometria e calcolo differenziale negli spazi euclidei $\mathbb{R}^n$, che si suppongono familiari al lettore. Ne risulterà probabilmente una lettura "impegnativa", non necessariamente "ricreativa", che però, almeno nelle intenzioni degli autori, dovrebbe ripagare il lettore con un'immagine piuttosto fedele di questi formidabili processi intellettuali, individuali e collettivi, che compongono una delle pagine più belle e profonde della storia della matematica.
Our aim is to present, at least partially, the great twine of ideas, techniques and concepts developed around the Poincaré conjecture, from its formulation at the beginning of last century to its solution due to Grisha Perelman at the beginning of the new millennium, completing the program based on the Ricci flow of Riemannian metrics on a 3-manifold, outlined and developed by Richard Hamilton since the '80s. In the limits and possibilities of a review paper, we wanted to present in a mathematically satisfactory way at least some of the crucial notions and ideas, starting from the precise formulation of the conjecture, using only basic concepts of linear algebra, geometry and differential calculus in the Euclidean space $\mathbb{R}^n$, that should be familiar to the reader. The result is possibly a "demanding" reading, not necessarily "recreational", but which, in our intentions, should reward the reader with a quite faithful image of these extraordinary intellectual achievements, individual and collective, composing one of the greatest and deepest pages of the history of mathematics.
@article{RUMI_2017_1_2_3_a1,
     author = {Benedetti, Riccardo and Mantegazza, Carlo},
     title = {La {Congettura} di {Poincar\'e} e il {Flusso} di {Ricci}},
     journal = {Matematica, cultura e societ\`a},
     pages = {245--289},
     publisher = {mathdoc},
     volume = {Ser. 1, 2},
     number = {3},
     year = {2017},
     zbl = {0768.51018},
     mrnumber = {3753845},
     language = {it},
     url = {http://geodesic.mathdoc.fr/item/RUMI_2017_1_2_3_a1/}
}
TY  - JOUR
AU  - Benedetti, Riccardo
AU  - Mantegazza, Carlo
TI  - La Congettura di Poincaré e il Flusso di Ricci
JO  - Matematica, cultura e società
PY  - 2017
SP  - 245
EP  - 289
VL  - 2
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RUMI_2017_1_2_3_a1/
LA  - it
ID  - RUMI_2017_1_2_3_a1
ER  - 
%0 Journal Article
%A Benedetti, Riccardo
%A Mantegazza, Carlo
%T La Congettura di Poincaré e il Flusso di Ricci
%J Matematica, cultura e società
%D 2017
%P 245-289
%V 2
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RUMI_2017_1_2_3_a1/
%G it
%F RUMI_2017_1_2_3_a1
Benedetti, Riccardo; Mantegazza, Carlo. La Congettura di Poincaré e il Flusso di Ricci. Matematica, cultura e società, Série 1, Tome 2 (2017) no. 3, pp. 245-289. http://geodesic.mathdoc.fr/item/RUMI_2017_1_2_3_a1/

[1] J. W. Alexander, An example of a simply connected surface bounding a region which is not simply connected, Proc. Nat. Acad. Sci. USA 10 (1924), no. 1, 8-10.

[2] R. Benedetti and C. Petronio, Lectures on hyperbolic geometry, Universitext, Springer-Verlag, Berlin, 1992. | DOI | MR | Zbl

[3] L. Bessieáres, Conjecture de Poincaré: la preuve de R. Hamilton et G. Perelman, Gazette des Mathématiciens 106 (2005), 7-35. | MR

[4] L. Bessieáres, G. Besson, M. Boileau, S. Maillot, and J. Porti, Geometrisation of 3-manifolds, EMS Tracts in Mathematics, vol. 13, European Mathematical Society (EMS), Zürich, 2010. | DOI | MR | Zbl

[5] S. Brendle, Convergence of the Yamabe flow for arbitrary initial energy, J. Diff. Geom. 69 (2005), no. 2, 217-278. | MR | Zbl

[6] H.-D. Cao and X.-P. Zhu, A complete proof of the Poincaré and geometrization conjectures - application of the Hamilton-Perelman theory of the Ricci flow, Asian J. Math. 10 (2006), no. 2, 165-492. | DOI | MR | Zbl

[7] X. Chen, P. Lu, and G. Tian, A note on uniformization of Riemann surfaces by Ricci flow, Proc. Amer. Math. Soc. 134 (2006), no. 11, 3391-3393 (electronic). | DOI | MR | Zbl

[8] T. H. Colding and W. P. Minicozzi Ii, Width and finite extinction time of Ricci flow, Geom. Topol. 12 (2008), no. 5, 2537-2586. | DOI | MR | Zbl

[9] S. K. Donaldson, An application of gauge theory to four-dimensional topology, J. Differential Geom. 18 (1983), no. 2, 279-315. | MR | Zbl

[10] K. Ecker, Regularity theory for mean curvature flow, Progress in Nonlinear Differential Equations and their Applications, 57, Birkhäuser Boston Inc., Boston, MA, 2004. | DOI | MR

[11] J. Ells Jr. and J. H. Sampson, Harmonic mappings of Riemannian manifolds, Amer. J. Math. 86 (1964), 109-160. | DOI | MR | Zbl

[12] M. H. Freedman, The topology of four-dimensional manifolds, J. Differential Geom. 17 (1982), no. 3, 357-453. | MR | Zbl

[13] D. Gabai, Foliations and the topology of 3-manifolds, Bull. Amer. Math. Soc. (N.S.) 8 (1983), no. 1, 77-80. | DOI | MR | Zbl

[14] M. Gage, An isoperimetric inequality with applications to curve shortening, Duke Math. J. 50 (1983), no. 4, 1225-1229. | DOI | MR | Zbl

[15] M. Gage, Curve shortening makes convex curves circular, Invent. Math. 76 (1984), 357-364. | fulltext EuDML | DOI | MR | Zbl

[16] M. Gage and R. S. Hamilton, The heat equation shrinking convex plane curves, J. Diff. Geom. 23 (1986), 69-95. | MR | Zbl

[17] S. Gallot, D. Hulin, and J. Lafontaine, Riemannian geometry, Springer-Verlag, 1990. | DOI | MR

[18] M. A. Grayson, The heat equation shrinks embedded plane curves to round points, J. Diff. Geom. 26 (1987), 285-314. | MR | Zbl

[19] L. GUILLOU and A. MARIN (eds.), À la recherche de la topologie perdue, Progress in Mathematics, vol. 62, Birkhäuser Boston, Inc., Boston, MA, 1986, I. Du côté de chez Rohlin. II. Le côté de Casson. [I. Rokhlin's way. II. Casson's way]. | MR | Zbl

[20] R. S. Hamilton, Three-manifolds with positive Ricci curvature, J. Diff. Geom. 17 (1982), no. 2, 255-306. | MR | Zbl

[21] R. S. Hamilton, Four-manifolds with positive curvature operator, J. Diff. Geom. 24 (1986), no. 2, 153-179. | MR | Zbl

[22] R. S. Hamilton, The Ricci flow on surfaces, Mathematics and general relativity (Santa Cruz, CA, 1986), Contemp. Math., vol. 71, Amer. Math. Soc., Providence, RI, 1988, pp. 237-262. | DOI | MR

[23] R. S. Hamilton, The formation of singularities in the Ricci flow, Surveys in differential geometry, Vol. II (Cambridge, MA, 1993), Int. Press, Cambridge, MA, 1995, pp. 7-136. | MR

[24] R. S. Hamilton, Four-manifolds with positive isotropic curvature, Comm. Anal. Geom. 5 (1997), no. 1, 1-92. | DOI | MR | Zbl

[25] W. Jaco, Lectures on three-manifold topology, CBMS Regional Conference Series in Mathematics, vol. 43, American Mathematical Society, Providence, R.I., 1980. | MR | Zbl

[26] K. Johannson, Homotopy equivalences of 3-manifolds with boundaries, Lecture Notes in Mathematics, vol. 761, Springer, Berlin, 1979. | MR | Zbl

[27] M. A. Kervaire and J. W. Milnor, Groups of homotopy spheres. I, Ann. of Math. (2) 77 (1963), 504-537. | DOI | MR | Zbl

[28] R. Kirby, A calculus for framed links in $S^3$, Invent. Math. 45 (1978), no. 1, 35-56. | fulltext EuDML | DOI | MR | Zbl

[29] B. Kleiner and J. Lott, Notes on Perelman's papers, ArXiv Preprint Server - http://arxiv.org, 2006. | DOI | MR

[30] B. Kleiner and J. Lott, Notes on Perelman's papers, Geom. Topol. 12 (2008), no. 5, 2587-2855. | DOI | MR | Zbl

[31] W. B. R. Lickorish, A representation of orientable combinatorial 3-manifolds, Ann. of Math. (2) 76 (1962), 531-540. | DOI | MR | Zbl

[32] C. Mantegazza, Lecture notes on mean curvature flow, Progress in Mathematics, vol. 290, Birkhäuser/Springer Basel AG, Basel, 2011. | DOI | MR | Zbl

[33] J. W. Milnor, On manifolds homeomorphic to the 7-sphere, Ann. of Math. (2) 64 (1956), 399-405. | DOI | MR | Zbl

[34] J. W. Milnor, A unique decomposition theorem for 3-manifolds, Amer. J. Math. 84 (1962), 1-7. | DOI | MR | Zbl

[35] J. W. Milnor, Lectures on the h-cobordism theorem, Notes by L. Siebenmann and J. Sondow, Princeton University Press, Princeton, N.J., 1965. | MR | Zbl

[36] J. W. Milnor, Topology from the differentiable viewpoint, Based on notes by David W. Weaver, The University Press of Virginia, Charlottesville, Va., 1965. | MR | Zbl

[37] E. E. Moise, Geometric topology in dimensions 2 and 3, Springer-Verlag, New York-Heidelberg, 1977, Graduate Texts in Mathematics, Vol. 47. | MR | Zbl

[38] J. Morgan, The Seiberg-Witten equations and applications to the topology of smooth four-manifolds, Mathematical Notes, vol. 44, Princeton University Press, Princeton, NJ, 1996. | MR | Zbl

[39] J. Morgan and G. Tian, Ricci flow and the Poincaré conjecture, ArXiv Preprint Server - http://arxiv.org, 2006. | MR

[40] J. Morgan and G. Tian, Ricci flow and the Poincaré conjecture, Clay Mathematics Monographs, vol. 3, American Mathematical Society, Providence, RI; Clay Mathematics Institute, Cambridge, MA, 2007. | MR

[41] J. Morgan and G. Tian, Completion of the proof of the geometrization conjecture, ArXiv Preprint Server - http://arxiv.org, 2008. | MR

[42]J. Morgan and G. Tian, The geometrization conjecture, Clay Mathematics Monographs, vol. 5, American Mathematical Society, Providence, RI; Clay Mathematics Institute, Cambridge, MA, 2014. | MR | Zbl

[43] W. D. Neumann and G. A. Swarup, Canonical decompositions of 3-manifolds, Geom. Topol. 1 (1997), 21-40 (electronic). | fulltext EuDML | DOI | MR | Zbl

[44] M. H. A. Newman, The engulfing theorem for topological manifolds, Ann. of Math. (2) 84 (1966), 555-571. | DOI | MR | Zbl

[45] G. Perelman, The entropy formula for the Ricci flow and its geometric applications, ArXiv Preprint Server http://arxiv.org, 2002. | Zbl

[46] G. Perelman, Finite extinction time for the solutions to the Ricci flow on certain three-manifolds, ArXiv Preprint Server - http://arxiv.org, 2003. | Zbl

[47] G. Perelman, Ricci flow with surgery on three-manifolds, ArXiv Preprint Server - http://arxiv.org, 2003. | Zbl

[48] P. Petersen, Riemannian geometry, second ed., Graduate Texts in Mathematics, vol. 171, Springer, New York, 2006. | MR

[49] C. P. Rourke and B. J. Sanderson, Introduction to piecewise-linear topology, Springer-Verlag, New York-Heidelberg, 1972, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 69. | MR | Zbl

[50] H. Schwetlick and M. Struwe, Convergence of the Yamabe flow for "large" energies, J. Reine Angew. Math. 562 (2003), 59-100. | DOI | MR | Zbl

[51] S. Smale, Generalized Poincaré's conjecture in dimensions greater than four, Ann. of Math. (2) 74 (1961), 391-406. | DOI | MR | Zbl

[52] S. Smale, On the structure of manifolds, Amer. J. Math. 84 (1962), 387-399. | DOI | MR | Zbl

[53] J. R. Stallings, Polyhedral homotopy-spheres, Bull. Amer. Math. Soc. 66 (1960), 485-488. | DOI | MR | Zbl

[54] T. Tao, Perelman's proof of the Poincaré conjecture: a nonlinear PDE perspective, ArXiv Preprint Server http://arxiv.org, 2006. | MR

[55] W. P. Thurston, Three-dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Amer. Math. Soc. (N.S.) 6 (1982), no. 3, 357-381. | DOI | MR | Zbl

[56] W. P. Thurston, Three-dimensional geometry and topology. Vol. 1, Princeton Mathematical Series, vol. 35, Princeton University Press, Princeton, NJ, 1997, Edited by Silvio Levy. | MR | Zbl

[57] F. Waldhausen, On irreducible 3-manifolds which are sufficiently large, Ann. of Math. (2) 87 (1968), 56-88. | DOI | MR | Zbl

[58] A. H. Wallace, Modifications and cobounding manifolds, Canad. J. Math. 12 (1960), 503-528. | DOI | MR | Zbl

[59] B. White, Evolution of curves and surfaces by mean curvature, Proceedings of the International Congress of Mathematicians, Vol. I (Beijing, 2002), 2002, pp. 525-538. | MR | Zbl

[60] J. H. C. Whitehead, A certain open manifold whose group is unity, Quart. J. Math. Oxford Ser. 6 (1939), 268-279. | MR | Zbl

[61] J. H. C. Whitehead, Certain theorems about three-dimensional manifolds (I), Quart. J. Math. Oxford Ser. 5 (1939), 308-320. | MR | Zbl

[62] R. Ye, Global existence and convergence of Yamabe flow, J. Diff. Geom. 39 (1994), no. 1, 35-50. | MR | Zbl

[63] E. C. Zeeman, The Poincaré conjecture for $n \leq 5$, Topology of 3-manifolds and related topics (Proc. The Univ. of Georgia Institute, 1961), Prentice-Hall, Englewood Cliffs, N.J., 1962, pp. 198-204. | MR