Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{RUMI_2017_1_2_2_a1, author = {De Lellis, Camillo}, title = {Il teorema di {Schl\"afli:} un invito alla quarta dimensione}, journal = {Matematica, cultura e societ\`a}, pages = {111--156}, publisher = {mathdoc}, volume = {Ser. 1, 2}, number = {2}, year = {2017}, zbl = {20.0561.01}, mrnumber = {3700588}, language = {it}, url = {http://geodesic.mathdoc.fr/item/RUMI_2017_1_2_2_a1/} }
De Lellis, Camillo. Il teorema di Schläfli: un invito alla quarta dimensione. Matematica, cultura e società, Série 1, Tome 2 (2017) no. 2, pp. 111-156. http://geodesic.mathdoc.fr/item/RUMI_2017_1_2_2_a1/
[AC09] Geometria analitica e algebra lineare. Pearson. Prentice Hall., 2009.
and .[Brø83] An introduction to convex polytopes, volume 90 of Graduate Texts in Mathematics. Springer Verlag, New York-Berlin, 1983. | MR
.[Ces88] Forme poliedriche regolari e semiregolari in tutti gli spazii. Lisboa Mem, 1888. | Zbl
.[Cox49] Regular Polytopes. Methuen & Co., Ltd., London; Pitman Publishing Corporation, New York, 1948, 1949. | MR | Zbl
.[Cox89] Introduction to geometry. Wiley Classics Library. John Wiley & Sons, Inc., New York, 1989. Reprint of the 1969 edition. | MR
.[Ded99] Forme: simmetria e topologia. Collana di matematica. Testi e manuali. Decibel/Zanichelli, 1999.
.[{Gos}99] On the regular and semi-regular figures in space of n dimensions. Messenger (2) 29, 43-48, 1899. | Zbl
.[Gre93] Euclidean and non-Euclidean geometries. W. H. Freeman and Company, New York, third edition, 1993. Development and history. | MR | Zbl
.[Jan94] Topologia. La cultura matematica. Zanichelli, 1994.
.[Roc70] Convex analysis. Princeton Mathematical Series, No. 28. Princeton University Press, Princeton, N.J., 1970. | MR
.[Sch01] Theorie der vielfachen Kontinuität. Hrsg im Auftrage der Denkschriften-Kommission der schweizerischen naturforschenden Gesellschaft von J. H. Graf. 1901.
.[vT84] Convex analysis. An introductory text. John Wiley & Sons, Inc., New York, 1984. | MR | Zbl
.