Dehn e Banach-Tarski: opposti paradossi
Matematica, cultura e società, Série 1, Tome 2 (2017) no. 1, pp. 81-95 Cet article a éte moissonné depuis la source Biblioteca Digitale Italiana di Matematica

Voir la notice de l'article

Banach-Tarski Paradox and Dehn's Theorem are seldom studied in our courses. Both these results are unexpected, hence their comprehension might be useful to comprehend the foundations of mathematics. We will try to give a complete proof of both results, highlighting the connections with other fundamental questions, like: Hilbert's paradox, Cantor-Bernstein theorem, fractal constructions, additive functions.
@article{RUMI_2017_1_2_1_a5,
     author = {Paolini, Emanuele},
     title = {Dehn e {Banach-Tarski:} opposti paradossi},
     journal = {Matematica, cultura e societ\`a},
     pages = {81--95},
     year = {2017},
     volume = {Ser. 1, 2},
     number = {1},
     mrnumber = {3676709},
     language = {it},
     url = {http://geodesic.mathdoc.fr/item/RUMI_2017_1_2_1_a5/}
}
TY  - JOUR
AU  - Paolini, Emanuele
TI  - Dehn e Banach-Tarski: opposti paradossi
JO  - Matematica, cultura e società
PY  - 2017
SP  - 81
EP  - 95
VL  - 2
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/RUMI_2017_1_2_1_a5/
LA  - it
ID  - RUMI_2017_1_2_1_a5
ER  - 
%0 Journal Article
%A Paolini, Emanuele
%T Dehn e Banach-Tarski: opposti paradossi
%J Matematica, cultura e società
%D 2017
%P 81-95
%V 2
%N 1
%U http://geodesic.mathdoc.fr/item/RUMI_2017_1_2_1_a5/
%G it
%F RUMI_2017_1_2_1_a5
Paolini, Emanuele. Dehn e Banach-Tarski: opposti paradossi. Matematica, cultura e società, Série 1, Tome 2 (2017) no. 1, pp. 81-95. http://geodesic.mathdoc.fr/item/RUMI_2017_1_2_1_a5/