Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{RUMI_2017_1_2_1_a5, author = {Paolini, Emanuele}, title = {Dehn e {Banach-Tarski:} opposti paradossi}, journal = {Matematica, cultura e societ\`a}, pages = {81--95}, publisher = {mathdoc}, volume = {Ser. 1, 2}, number = {1}, year = {2017}, zbl = {0587.28004}, mrnumber = {3676709}, language = {it}, url = {http://geodesic.mathdoc.fr/item/RUMI_2017_1_2_1_a5/} }
Paolini, Emanuele. Dehn e Banach-Tarski: opposti paradossi. Matematica, cultura e società, Série 1, Tome 2 (2017) no. 1, pp. 81-95. http://geodesic.mathdoc.fr/item/RUMI_2017_1_2_1_a5/
[1] Hilbert's third problem. Winston, 1978. | MR
.[2] The geometry of fractal sets. Cambridge University Press, 1985. | MR | Zbl
.[3] Dissections: Plane & Fancy. Cambridge University Press, 1997. | DOI | MR | Zbl
.[4] Zermelo's Axiom of Choice: Its Origins, Development, and Influence. Studies in the History of Mathematics and Physical Sciences 8. Springer-Verlag New York, 1982. | DOI | MR | Zbl
.[5] A Mathematical Gift, III - the interplay between topology, functions, geometry, and algebra. AMS, 2005. | DOI | MR | Zbl
, .[6] A model of set-theory in which every set of reals is Lebesgue measurable. Annals of Mathematics 92, 1-56, 1970. | DOI | MR | Zbl
.[7] The Banach-Tarski paradox. https://www.math.ucla.edu/tao/preprints/Expository/banach-tarski.pdf.
.[8] The Banach-Tarski paradox. Cambridge University Press, 1985. | DOI | MR | Zbl
.