The mathematics of Kuramoto models which describe synchronization phenomena
Matematica, cultura e società, Série 1, Tome 1 (2016) no. 2, pp. 123-132

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

The so-called "Kuramoto models" and similar ones represent a paradigmatic way to describe a number of synchronization phenomena. These are states into which incoherent systems may go, often as it occurs in phase transition, and concern a variety of cases, ranging form Physics to Neuroscience, from Biology to Engineering and even Social Sciences. They explain, at least qualitatively, a large variety of complex processes. In this paper, we review such models and the underlying mathematics, showing some of their peculiarities.
@article{RUMI_2016_1_1_2_a3,
     author = {Spigler, Renato},
     title = {The mathematics of {Kuramoto} models which describe synchronization phenomena},
     journal = {Matematica, cultura e societ\`a},
     pages = {123--132},
     publisher = {mathdoc},
     volume = {Ser. 1, 1},
     number = {2},
     year = {2016},
     zbl = {1404.34066},
     mrnumber = {3586455},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RUMI_2016_1_1_2_a3/}
}
TY  - JOUR
AU  - Spigler, Renato
TI  - The mathematics of Kuramoto models which describe synchronization phenomena
JO  - Matematica, cultura e società
PY  - 2016
SP  - 123
EP  - 132
VL  - 1
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RUMI_2016_1_1_2_a3/
LA  - en
ID  - RUMI_2016_1_1_2_a3
ER  - 
%0 Journal Article
%A Spigler, Renato
%T The mathematics of Kuramoto models which describe synchronization phenomena
%J Matematica, cultura e società
%D 2016
%P 123-132
%V 1
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RUMI_2016_1_1_2_a3/
%G en
%F RUMI_2016_1_1_2_a3
Spigler, Renato. The mathematics of Kuramoto models which describe synchronization phenomena. Matematica, cultura e società, Série 1, Tome 1 (2016) no. 2, pp. 123-132. http://geodesic.mathdoc.fr/item/RUMI_2016_1_1_2_a3/