The Mathematical Beauty of Nature and Turing Pattern Formation
Matematica, cultura e società, Série 1, Tome 1 (2016) no. 2, pp. 93-103.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

Does it really exist a mathematical beauty of nature? And the revolutionary Turing's idea can be a key to decipher it? In this paper we try to answer these questions by describing the origins, the theoretical basis and the scientific impact of Alan Turing's theory on pattern formation. The picture that emerges is that of a highly topical theory, that still fascinates because of its strong interdisciplinary features and for the many advances that it has allowed to obtain in mathematics as well as in chemistry and in biology.
Esiste davvero una bellezza matematica della natura? E la rivoluzionaria idea di Turing può fornire una chiave per decifrarla? In questo articolo si cerca di rispondere a questi interrogativi illustrando la genesi, le basi teoriche e l'impatto scientifico della teoria di Alan Turing sulla "pattern formation". Il quadro che emerge è quello di una teoria ancora di grande attualità, che continua ad affascinare per la sua forte interdisciplinarietà e per i tanti progressi che ha permesso di ottenere sia in ambito matematico che in campo chimico e biologico.
@article{RUMI_2016_1_1_2_a1,
     author = {Lacitignola, Deborah},
     title = {The {Mathematical} {Beauty} of {Nature} and {Turing} {Pattern} {Formation}},
     journal = {Matematica, cultura e societ\`a},
     pages = {93--103},
     publisher = {mathdoc},
     volume = {Ser. 1, 1},
     number = {2},
     year = {2016},
     zbl = {1404.92029},
     mrnumber = {3586453},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RUMI_2016_1_1_2_a1/}
}
TY  - JOUR
AU  - Lacitignola, Deborah
TI  - The Mathematical Beauty of Nature and Turing Pattern Formation
JO  - Matematica, cultura e società
PY  - 2016
SP  - 93
EP  - 103
VL  - 1
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RUMI_2016_1_1_2_a1/
LA  - en
ID  - RUMI_2016_1_1_2_a1
ER  - 
%0 Journal Article
%A Lacitignola, Deborah
%T The Mathematical Beauty of Nature and Turing Pattern Formation
%J Matematica, cultura e società
%D 2016
%P 93-103
%V 1
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RUMI_2016_1_1_2_a1/
%G en
%F RUMI_2016_1_1_2_a1
Lacitignola, Deborah. The Mathematical Beauty of Nature and Turing Pattern Formation. Matematica, cultura e società, Série 1, Tome 1 (2016) no. 2, pp. 93-103. http://geodesic.mathdoc.fr/item/RUMI_2016_1_1_2_a1/

[1] J. Bard, I. Lauder, How well does Turing's theory of morphogenesis work?, J. Theor. Biol. 45 (1974), 501-531.

[2] P. Borckmans, G. Dewel, A. De Wit, E. Dulos, J. Boissonade, F. Gauffre, P. De Kepper, Diffusive instabilities and chemical reactions, Int. J. Bif. and Chaos 12 (2002), 2307-2332. | DOI | MR | Zbl

[3] B. Bozzini, D. Lacitignola, C. Mele, I. Sgura, Coupling of morphology and chemistry leads to morphogenesis in electrochemical metal growth: a review of the reactiondiffusion approach, Acta Applic. Mathematicae 122 (2012), 53-68. | DOI | MR | Zbl

[4] B. Bozzini, D. Lacitignola, C. Mele, I. Sgura, Morphogenesis in metal electrodeposition, Note di Matem. 32 (2012), 7-46. | MR | Zbl

[5] B. Bozzini, D. Lacitignola, I. Sgura, Spatio-temporal organisation in alloy electrodeposition: a morphochemical mathematical model and its experimental validation, Journal of Solid State Electrochemistry 17 (2013), 467-479. | DOI | MR

[6] B. Bozzini, G. Gambino, D. Lacitignola, S. Lupo, M. Sammartino, I. Sgura, Weakly nonlinear analysis of Turing patterns in a morphochemical model for metal growth, Computers & Mathematics with Applications 70 (2015), 1948-1969. | DOI | MR

[7] M. Breden, J.P. Lessard, M. Vanicat, Global bifurcation diagrams of steady states of systems of PDEs via rigorous numerics: a 3-component reaction-diffusion system, Acta Applicandae Mathematicae 128 (2013), 113152. | DOI | MR | Zbl

[8] B. Bunow, J.P. Kernevez, G. Joly, D. Thomas, Pattern formation by reaction-diffusion instabilities: application to morphogenesis in Drosophila, J. Theor. Biol. 84 (1980), 629-649. | DOI | MR

[9] T.K. Callahan, E. Knobloch, Symmetry-breaking bifurcations on cubic lattices, Nonlinearity 10 (1997), 1179. | DOI | MR | Zbl

[10] T.K. Callahan, E. Knobloch, Pattern formation in three-dimensional reaction-diffusion systems, Physica D 132 (1999), 339. | DOI | MR | Zbl

[11] J.H. Claxton, The determination of patterns with special reference to that of the central primary skin follicles in sheep, J. Theor. Biol. 7 (1964), 302-317.

[12] E. Crampin, E.A. Gaffney, P.K. Maini, Reaction and diffusion on growing domains: scenarios for robust pattern formation, Bulletin Mathematical Biology 61 (1999), 1093-1120. | Zbl

[13] V. Castets, E. Dulos, J. Boissonade, P. De Kepper, Experimental evidence of a sustained standing Turing type nonequilibrium chemical pattern. Phys. Rev. Lett. 64 (1990), 2953.

[14] J.D. Crawford, Introduction to bifurcation theory, Rev. Mod. Phys. 63 (1991), 991-1037. | DOI | MR

[15] M.C. Cross, P.C. Honenberg, Pattern formation outside the equilibrium, Reviews in Modern Phys. 65 (1993), 851-1112.

[16] G.C. Cruywagen, P.K. Maini, J.D. Murray, Biological pattern formation on two-dimensional spatial domains: a nonlinear bifurcation analysis, SIAM J. Appl. Math. 57 (1993), 1485-1509. | DOI | MR | Zbl

[17] I.R. Epstein, J.A. Pojman, O. Steinbock, Introduction: Self-organization in non equilibrium chemical systems, Chaos 16 (2006), 037101. | Zbl

[18] G. Galilei, Il Saggiatore, 1623.

[19] G. Gambino, M.C. Lombardo, M. Sammartino, Turing instability and traveling fronts for a nonlinear reaction-diffusion system with cross-diffusion, Math. Comp. Simul. 82 (2012), 1112-1132. | DOI | MR | Zbl

[20] G. Gambino, M.C. Lombardo, M. Sammartino, Pattern formation driven by cross-diffusion in a 2D domain, Nonlinear Analysis: Real World Applications 14 (2013), 1755-1779. | DOI | MR | Zbl

[21] A. Garfinkel, Y. Tintut, D. Petrasek, K. Bostrom, L.L. Demer, Pattern formation by vascular mesenchymal cells, Proc. Nat. Acad. Sci. USA 101 (2004), 9247-9250.

[22] B. Houchmandzadeh, E. Wieschais, S. Leibler, Establishment of developmental precision and proportions in the early Drosophila embryo. Nature 415 (2002), 798-802.

[23] A. Hunding, P.G. Sorensen, Size adaptation of Turing prepatterns, J. Math. Biol. 26 (1988), 27-39. | DOI | MR | Zbl

[24] M. Ipsen, F. Hynne, P.G. Sorensen, Amplitude equations and chemical reaction-diffusion systems, Int. J. Bifurc. Chaos 7 (1997), 1539-1554. | Zbl

[25] M. Ipsen, F. Hynne, P.G. Sorensen, Systematic derivation of amplitude equations and normal forms for dynamical systems, Chaos 8 (1998), 834-852. | DOI | MR | Zbl

[26] S. Ishihara, K. Kaneko, Turing pattern with proportion preservation, J. Theor. Biol. 238 (2006), 683-693. | DOI | MR

[27] H.S. Jung, P.H. Francis-West, R.B. Widelitz, T.X. Jiang, S. Ting-Berreth, C. Tickle, L. Wolpert, C.M. Chuong, Local inhibitory action of BMPs and their relationships with activators in feather formation: implications for periodic patterning, Dev. Biol. 196 (1998), 11-23.

[28] R. Kapral, K. Showalter, Chemical Waves and Patterns, Kluwer Academic Publishers, 1995.

[29] S. Kondo, R. Asai, A reaction-diffusion wave on the skin of the marine angelfish Pomacanthus, Nature 376 (1995), 765-768.

[30] D. Lacitignola, B. Bozzini, I. Sgura, Spatio-temporal organization in a morphochemical electrodeposition model: analysis and numerical simulation of spiral waves, Acta Applicandae Mathematicae 132 (2014), 377-389. | DOI | MR | Zbl

[31] D. Lacitignola, B. Bozzini, I. Sgura, Spatio-temporal organization in a morphochemical electrodeposition model: Hopf and Turing instabilities and their interplay, European Journal of Applied Mathematics 26 (2015), 143-173. | DOI | MR

[32] K.J. Lee, W.D. Mccormick, Q. Ouyang, H.L. Swinney, Pattern Formation by Interacting Chemical Fronts, Science, New Series 261 (1993), 192-194.

[33] T. Leppanen, M. Karttunen, K. Kaski, R.A. Barrio, Turing systems as models of complex pattern formation, Braz. J. Phys. 34 (2004), 368-372.

[34] T. Leppanen, The Theory of Turing Pattern Formation, in Current Topics in Physics in Honor of Sir Roger Elliot, Imperial College Press, Eds. K. Kaski and R.A. Barrio, 190-227, 2005.

[35] Y.J. Li, J. Oslonovitch, N. Mazouz, F. Plenge, K. Krischer, G. Ertl, Turing-type patterns on electrode surfaces, Science 291 (2001), 2395- 2398.

[36] A. Madzvamuse, E.A. Gaffney, P.K. Maini, Stability analysis of reaction-diffusion systems with time-dependent coefficients on growing domains, Journal of Mathematical Biology 61 (2010), 133-164. | DOI | MR | Zbl

[37] P.K. Maini, E.J. Crampin, A. Madzvamuse, A.J. Wathen, R.D.K. Thomas, Implications of domain growth in morphogenesis. In Mathematical Modelling & Computing in Biology and Medicine: 5th ESMTB Conf. 2002, vol. 1, 67-73, 2003. | MR

[38] P.K. Maini, Using mathematical models to help understand biological pattern formation. Comptes Rendus Biologies 327 (2004), 225-234.

[39] P.K. Maini, T.E. Woolley, R.E. Baker, E.A. Gaffney, S. Seirin Lee, Turing's model for biological pattern formation & the robustness problem, J.R. Soc.Interface Focus 2 (2012), 487- 496.

[40] P.K. Maini, And Philip K. Maini Wonders at - Turing's Theory of Morphogenesis in Alan Turing: His Work and Impact, 1st Edition, 684-689, edited by S. Barry Cooper, J. van Leeuwen, 2013. | DOI | MR

[41] C. Mou, B. Jackson, P. Schneider, P.A. Overbeek, D.J. Headon, Generation of the primary hair follicle pattern, Proc. Natl. Acad. Sci. U.S.A. 103 (2006), 9075-9080.

[42] J.D. Murray, A pre-pattern formation mechanism for animal coat markings. J. Theor. Biol. 88 (1981), 161-199. | DOI | MR

[43] J.D. Murray, Mathematical Biology II; Spatial models and biomedical applications, 3rd edition, Springer, 2002. | MR

[44] B.N. Nagorcka, J.R. Mooney, The role of a reaction-diffusion system in the formation of hair fibres, J. Theor. Biol. 98 (1982), 575-607. | DOI | MR

[45] H.G. Othmer, E. Pate, Scale-invariance in reaction-diffusion models of spatial pattern formation, Proc. Natl. Acad. Sci. 77 (1980), 4180-4184.

[46] H.G. Othmer, K. Painter, D. Umulis, C. Xue, The intersection of theory and application in biological pattern formation, Math. Model. Nat. Phenom. 4 (2009), 3-79. | fulltext EuDML | DOI | MR | Zbl

[47] Q. Ouyang, H.L. Swinney, Transition from a uniform state to hexagonal and striped Turing patterns, Nature 352 (1991), 610- 612.

[48] K.J. Painter, P.K. Maini, H.G. Othmer, Stripe forma- tion in Juvenile Pomacanthus explained by a generalized Turing mechanism with chemotaxis, PNAS 96 (1999), 5549-5554.

[49] S. Roth, Mathematics and biology: a Kantian view on the history of pattern formation theory, Dev. Genes Evol. 221 (2011), 255-279.

[50] F. Sagués, I.R. Epstein, Nonlinear Chemical Dynamics, Dalton Trans. (2003), 1201- 1217.

[51] M. Sharratt, Galileo: Decisive Innovator. Cambridge: Cambridge University Press, 1994. | Zbl

[52] S.Y. Shvartsman, C.B. Muratov, D.A. Lauffenburger, Modeling and computational analysis of EGF receptor-mediated cell communication in Drosophila oogenesis, Development 129 (2002), 2577-2589.

[53] S. Sick, S. Reinker, J. Timmer, T. Schlake, WNT and DKK determine hair follicle spacing through a reaction-diffusion mechanism, Science 314 (2006), 1447-1450.

[54] D.W. Thompson, On Growth and Form, Cambridge University Press, 1917. | MR

[55] C. Tian, Z. Ling, Z. Lin, Turing pattern formation in a predator-prey-mutualist system, Nonlinear Analysis: Real World Applications 12 (2011), 3224-3237. | DOI | MR | Zbl

[56] A.M. Turing, Intelligent machinery, In: The Essential Turing, Oxford University Press, 1948, (reprinted 2004). | DOI | MR

[57] A.M. Turing, Computing machinery and intelligence, Mind 59 (1950), 433-460. | DOI | MR

[58] A.M. Turing, The chemical bases of morphogenesis, Phil. Trans. Royal Soc. London B 237 (1952), 37-72. | MR

[59] D.M. Umulis, H.G. Othmer, Mechanisms of scaling in pattern formation, Development 140 (2013), 4830-4843.

[60] V.K. Vanag, I.R. Epstein, Design and control of patterns in reaction-diffusion systems, Chaos 18 (2008), 1-11. | DOI | MR | Zbl

[61] V.K. Vanag, I.R. Epstein, Pattern formation mechanisms in reaction-diffusion systems, Int. J. Dev. Biol. 53 (2009), 673-681.

[62] C. Varea, J.L. Aragon, R.A. Barrio, Confined Turing patterns in growing systems, Phys. Rev. E 56 (1997), 1250-1253.

[63] J. Wang, J. Wei, J. Shi, Global bifurcation analysis and pattern formation inhomogeneous diffusive predatorprey systems, J. Differential Equations 260 (2016), 3495-3523. | DOI | MR | Zbl

[64] L. Wolpert, Positional information and the spatial pattern of cellar differentiation, J. Theor. Biol. 25 (1969), 1-47.