Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{RUMI_2016_1_1_2_a1, author = {Lacitignola, Deborah}, title = {The {Mathematical} {Beauty} of {Nature} and {Turing} {Pattern} {Formation}}, journal = {Matematica, cultura e societ\`a}, pages = {93--103}, publisher = {mathdoc}, volume = {Ser. 1, 1}, number = {2}, year = {2016}, zbl = {1404.92029}, mrnumber = {3586453}, language = {en}, url = {http://geodesic.mathdoc.fr/item/RUMI_2016_1_1_2_a1/} }
Lacitignola, Deborah. The Mathematical Beauty of Nature and Turing Pattern Formation. Matematica, cultura e società, Série 1, Tome 1 (2016) no. 2, pp. 93-103. http://geodesic.mathdoc.fr/item/RUMI_2016_1_1_2_a1/
[1] How well does Turing's theory of morphogenesis work?, J. Theor. Biol. 45 (1974), 501-531.
, ,[2] Diffusive instabilities and chemical reactions, Int. J. Bif. and Chaos 12 (2002), 2307-2332. | DOI | MR | Zbl
, , , , , , ,[3] Coupling of morphology and chemistry leads to morphogenesis in electrochemical metal growth: a review of the reactiondiffusion approach, Acta Applic. Mathematicae 122 (2012), 53-68. | DOI | MR | Zbl
, , , ,[4] Morphogenesis in metal electrodeposition, Note di Matem. 32 (2012), 7-46. | MR | Zbl
, , , ,[5] Spatio-temporal organisation in alloy electrodeposition: a morphochemical mathematical model and its experimental validation, Journal of Solid State Electrochemistry 17 (2013), 467-479. | DOI | MR
, , ,[6] Weakly nonlinear analysis of Turing patterns in a morphochemical model for metal growth, Computers & Mathematics with Applications 70 (2015), 1948-1969. | DOI | MR
, , , , , ,[7] Global bifurcation diagrams of steady states of systems of PDEs via rigorous numerics: a 3-component reaction-diffusion system, Acta Applicandae Mathematicae 128 (2013), 113152. | DOI | MR | Zbl
, , ,[8] Pattern formation by reaction-diffusion instabilities: application to morphogenesis in Drosophila, J. Theor. Biol. 84 (1980), 629-649. | DOI | MR
, , , ,[9] Symmetry-breaking bifurcations on cubic lattices, Nonlinearity 10 (1997), 1179. | DOI | MR | Zbl
, ,[10] Pattern formation in three-dimensional reaction-diffusion systems, Physica D 132 (1999), 339. | DOI | MR | Zbl
, ,[11] The determination of patterns with special reference to that of the central primary skin follicles in sheep, J. Theor. Biol. 7 (1964), 302-317.
,[12] Reaction and diffusion on growing domains: scenarios for robust pattern formation, Bulletin Mathematical Biology 61 (1999), 1093-1120. | Zbl
, , ,[13] Experimental evidence of a sustained standing Turing type nonequilibrium chemical pattern. Phys. Rev. Lett. 64 (1990), 2953.
, , , ,[14] Introduction to bifurcation theory, Rev. Mod. Phys. 63 (1991), 991-1037. | DOI | MR
,[15] Pattern formation outside the equilibrium, Reviews in Modern Phys. 65 (1993), 851-1112.
, ,[16] Biological pattern formation on two-dimensional spatial domains: a nonlinear bifurcation analysis, SIAM J. Appl. Math. 57 (1993), 1485-1509. | DOI | MR | Zbl
, , ,[17] Introduction: Self-organization in non equilibrium chemical systems, Chaos 16 (2006), 037101. | Zbl
, , ,[18] Il Saggiatore, 1623.
,[19] Turing instability and traveling fronts for a nonlinear reaction-diffusion system with cross-diffusion, Math. Comp. Simul. 82 (2012), 1112-1132. | DOI | MR | Zbl
, , ,[20] Pattern formation driven by cross-diffusion in a 2D domain, Nonlinear Analysis: Real World Applications 14 (2013), 1755-1779. | DOI | MR | Zbl
, , ,[21] Pattern formation by vascular mesenchymal cells, Proc. Nat. Acad. Sci. USA 101 (2004), 9247-9250.
, , , , ,[22] Establishment of developmental precision and proportions in the early Drosophila embryo. Nature 415 (2002), 798-802.
, , ,[23] Size adaptation of Turing prepatterns, J. Math. Biol. 26 (1988), 27-39. | DOI | MR | Zbl
, ,[24] Amplitude equations and chemical reaction-diffusion systems, Int. J. Bifurc. Chaos 7 (1997), 1539-1554. | Zbl
, , ,[25] Systematic derivation of amplitude equations and normal forms for dynamical systems, Chaos 8 (1998), 834-852. | DOI | MR | Zbl
, , ,[26] Turing pattern with proportion preservation, J. Theor. Biol. 238 (2006), 683-693. | DOI | MR
, ,[27] Local inhibitory action of BMPs and their relationships with activators in feather formation: implications for periodic patterning, Dev. Biol. 196 (1998), 11-23.
, , , , , , , ,[28] Chemical Waves and Patterns, Kluwer Academic Publishers, 1995.
, ,[29] A reaction-diffusion wave on the skin of the marine angelfish Pomacanthus, Nature 376 (1995), 765-768.
, ,[30] Spatio-temporal organization in a morphochemical electrodeposition model: analysis and numerical simulation of spiral waves, Acta Applicandae Mathematicae 132 (2014), 377-389. | DOI | MR | Zbl
, , ,[31] Spatio-temporal organization in a morphochemical electrodeposition model: Hopf and Turing instabilities and their interplay, European Journal of Applied Mathematics 26 (2015), 143-173. | DOI | MR
, , ,[32] Pattern Formation by Interacting Chemical Fronts, Science, New Series 261 (1993), 192-194.
, , , ,[33] Turing systems as models of complex pattern formation, Braz. J. Phys. 34 (2004), 368-372.
, , , ,[34] The Theory of Turing Pattern Formation, in Current Topics in Physics in Honor of Sir Roger Elliot, Imperial College Press, Eds. K. Kaski and R.A. Barrio, 190-227, 2005.
,[35] Turing-type patterns on electrode surfaces, Science 291 (2001), 2395- 2398.
, , , , , ,[36] Stability analysis of reaction-diffusion systems with time-dependent coefficients on growing domains, Journal of Mathematical Biology 61 (2010), 133-164. | DOI | MR | Zbl
, , ,[37] Implications of domain growth in morphogenesis. In Mathematical Modelling & Computing in Biology and Medicine: 5th ESMTB Conf. 2002, vol. 1, 67-73, 2003. | MR
, , , , ,[38] Using mathematical models to help understand biological pattern formation. Comptes Rendus Biologies 327 (2004), 225-234.
,[39] Turing's model for biological pattern formation & the robustness problem, J.R. Soc.Interface Focus 2 (2012), 487- 496.
, , , , ,[40] And Philip K. Maini Wonders at - Turing's Theory of Morphogenesis in Alan Turing: His Work and Impact, 1st Edition, 684-689, edited by S. Barry Cooper, J. van Leeuwen, 2013. | DOI | MR
,[41] Generation of the primary hair follicle pattern, Proc. Natl. Acad. Sci. U.S.A. 103 (2006), 9075-9080.
, , , , ,[42] A pre-pattern formation mechanism for animal coat markings. J. Theor. Biol. 88 (1981), 161-199. | DOI | MR
,[43] Mathematical Biology II; Spatial models and biomedical applications, 3rd edition, Springer, 2002. | MR
,[44] The role of a reaction-diffusion system in the formation of hair fibres, J. Theor. Biol. 98 (1982), 575-607. | DOI | MR
, ,[45] Scale-invariance in reaction-diffusion models of spatial pattern formation, Proc. Natl. Acad. Sci. 77 (1980), 4180-4184.
, ,[46] The intersection of theory and application in biological pattern formation, Math. Model. Nat. Phenom. 4 (2009), 3-79. | fulltext EuDML | DOI | MR | Zbl
, , , ,[47] Transition from a uniform state to hexagonal and striped Turing patterns, Nature 352 (1991), 610- 612.
, ,[48] Stripe forma- tion in Juvenile Pomacanthus explained by a generalized Turing mechanism with chemotaxis, PNAS 96 (1999), 5549-5554.
, , ,[49] Mathematics and biology: a Kantian view on the history of pattern formation theory, Dev. Genes Evol. 221 (2011), 255-279.
,[50] Nonlinear Chemical Dynamics, Dalton Trans. (2003), 1201- 1217.
, ,[51] Galileo: Decisive Innovator. Cambridge: Cambridge University Press, 1994. | Zbl
,[52] Modeling and computational analysis of EGF receptor-mediated cell communication in Drosophila oogenesis, Development 129 (2002), 2577-2589.
, , ,[53] WNT and DKK determine hair follicle spacing through a reaction-diffusion mechanism, Science 314 (2006), 1447-1450.
, , , ,[54] On Growth and Form, Cambridge University Press, 1917. | MR
,[55] Turing pattern formation in a predator-prey-mutualist system, Nonlinear Analysis: Real World Applications 12 (2011), 3224-3237. | DOI | MR | Zbl
, , ,[56] Intelligent machinery, In: The Essential Turing, Oxford University Press, 1948, (reprinted 2004). | DOI | MR
,[57] Computing machinery and intelligence, Mind 59 (1950), 433-460. | DOI | MR
,[58] The chemical bases of morphogenesis, Phil. Trans. Royal Soc. London B 237 (1952), 37-72. | MR
,[59] Mechanisms of scaling in pattern formation, Development 140 (2013), 4830-4843.
, ,[60] Design and control of patterns in reaction-diffusion systems, Chaos 18 (2008), 1-11. | DOI | MR | Zbl
, ,[61] Pattern formation mechanisms in reaction-diffusion systems, Int. J. Dev. Biol. 53 (2009), 673-681.
, ,[62] Confined Turing patterns in growing systems, Phys. Rev. E 56 (1997), 1250-1253.
, , ,[63] Global bifurcation analysis and pattern formation inhomogeneous diffusive predatorprey systems, J. Differential Equations 260 (2016), 3495-3523. | DOI | MR | Zbl
, , ,[64] Positional information and the spatial pattern of cellar differentiation, J. Theor. Biol. 25 (1969), 1-47.
,