Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{RUMI_2016_1_1_1_a2, author = {Toscani, Giuseppe}, title = {Sulle code di potenza di {Pareto}}, journal = {Matematica, cultura e societ\`a}, pages = {21--30}, publisher = {mathdoc}, volume = {Ser. 1, 1}, number = {1}, year = {2016}, zbl = {1418.91405}, mrnumber = {3559736}, language = {it}, url = {http://geodesic.mathdoc.fr/item/RUMI_2016_1_1_1_a2/} }
Toscani, Giuseppe. Sulle code di potenza di Pareto. Matematica, cultura e società, Série 1, Tome 1 (2016) no. 1, pp. 21-30. http://geodesic.mathdoc.fr/item/RUMI_2016_1_1_1_a2/
[1] Ricerche intorno alla curva dei redditi. Ann. Mat. Pura Appl. Ser. 4 21, (1925), 123-159. | DOI | MR | Zbl
,[2] Explicit equilibria in a kinetic model of gambling. Phys. Rev. E 81, (2010), 066115. | DOI | MR | Zbl
, ,[3] Di alcune curve descritte da fenomeni economici aventi relazione colla curva del reddito o con quella del patrimonio. Giornale degli Economisti, Serie II 14, (1897), 177-214.
,[4] Kinetic models of conservative economies with wealth redistribution. Commun. Math. Sci. 7, (4) (2009), 901-916. | MR | Zbl
, , ,[5] The theory of the nonlinear spatially uniform Boltzmann equation for Maxwellian molecules. Sov. Sci. Rev. c 7, (1988), 111-233. | MR | Zbl
,[6] On some properties of kinetic and hydrodynamic equations for inelastic interactions. J. Stat. Phys., 98,(2001), 743-773; Erratum on: J. Stat. Phys., 103, (2001), 1137-1138. | DOI | MR | Zbl
, , ,[7] Weitere Studien über das Wärmegleichgewicht unter Gasmolekülen. Sitzungsberichte der Akademie der Wissenschaften 66, (1995), 275-370, in Lectures on Gas Theory. Berkeley: University of California Press (1964) Translated by S.G. Brush. Reprint of the 1896-1898 Edition. Reprinted by Dover Publ.
,[8] Contractive probability metrics and asymptotic behavior of dissipative kinetic equations. Riv. Mat. Univ. Parma 6/7, (2007), 75-198. | MR | Zbl
, ,[9] The Boltzmann equation and its applications. Springer Series in Applied Mathematical Sciences, Vol. 67, Springer-Verlag, New York 1988. | DOI | MR | Zbl
,[10] The mathematical theory of dilute gases. Springer Series in Applied Mathematical Sciences, Vol. 106, Springer-Verlag, New York 1994. | DOI | MR | Zbl
, , ,[11] Distributions of money in models of market economy. Int. J. Modern Phys. C 13, (2002), 1315-1321.
,[12] Statistical mechanics of money: effects of saving propensity. Eur. Phys. J. B 17, (2000), 167-170
, ,[13] Pareto law in a kinetic model of market with random saving propensity. Physica A 335, (2004), 155-163. | DOI | MR
, , ,[14] Master equation for a kinetic model of trading market and its analytic solution. Phys. Rev. E 72, (2005), 026126.
, , ,[15] On a kinetic model for a simple market economy. J. Stat. Phys. 120, (2005), 253-277. | DOI | MR | Zbl
, , ,[16] Intorno alla curva dei redditi di Amoroso. Riv. Italiana Statist. Econ. Finanza 4, (1) (1932), 723-729.
,[17] Ricerche sulla curva dei redditi. Giornale degli Economisti e Annali di Economia Nuova Serie, Anno 8, No. 1/2 (1949), 91-114.
,[18] Statistical mechanics of money. Eur. Phys. Jour. B 17, (2000), 723-729.
, ,[19] Kinetic equations modelling wealth redistribution: a comparison of approaches. Phys. Rev. E 78, (2008), 056103. | DOI | MR
, , ,[20] A Boltzmann type approach to the formation of wealth distribution curves. Riv. Mat. Univ. Parma 8, (1) (2009), 199-261. | MR | Zbl
, , ,[21] High energy tails for inelastic Maxwell models. Europhys. Lett. 58, (2002), 182-187.
, ,[22] Scaling solutions of inelastic Boltzmann equation with over-populated high energy tails. J. Statist. Phys. 109, (2002), 407-432. | DOI | MR | Zbl
, ,[23] Taxes in a simple wealth distribution model by inelastically scattering particles. Interdisciplinary description of complex systems 7, (2009), 1-7.
,[24] Il valore delle leggi statistiche nella fisica e nelle scienze sociali. Scientia 36, (1942), 58-66.
,[25] Kinetic models for socioeconomic dynamics of speculative markets. Physica A 391, (2012), 715-730.
, ,[26] On steady distributions of kinetic models of conservative economies. J. Stat. Phys. 130, (2008), 1087-1117. | DOI | MR | Zbl
, ,[27] G. NALDI, L. PARESCHI, G. TOSCANI eds., Mathematical modelling of collective behavior in socio-economic and life sciences. Birkhauser, Boston 2010. | DOI | MR | Zbl
[28] Interacting multiagent systems: kinetic equations and Monte Carlo methods. Oxford University Press, Oxford 2014. | Zbl
, ,[29] Wealth distribution and collective knowledge. A Boltzmann approach. Phil. Trans. R. Soc. A 372, (2014), 20130396. | DOI | MR | Zbl
, ,[30] Cours d'èconomie politique. Rouge, Lausanne and Paris, 1897.
,[31] Inelastically scattering particles and wealth distribution in an open economy. Phys. Rev. E 69, (2004), 046102.
,[32] Anomalous fluctuations in the dynamics of complex systems: from DNA and physiology to econophysics. Physica A 224, (1996), 302-321.
, , , , , , , , , , {author_10}, {author_11}, {author_12}, {author_13},[33] Wealth redistribution in conservative linear kinetic models with taxation. Europhysics Letters 88, (1) (2009), 10007.
,[34] Sharp entropy dissipation bounds and explicit rate of trend to equilibrium for the spatially homogeneous Boltzmann equation. Commun. Math. Phys. 203 (1999), 667-706. | DOI | MR | Zbl
, ,[35] Cercignani's conjecture is sometimes true and always almost true. Commun. Math. Phys. 234, (2003), 455-490. | DOI | MR | Zbl
,