The generalized Weber problem with expected distances
RAIRO - Operations Research - Recherche Opérationnelle, Tome 29 (1995) no. 1, pp. 35-57.

Voir la notice de l'article provenant de la source Numdam

@article{RO_1995__29_1_35_0,
     author = {Carrizosa, E. and Conde, E. and Mu\~noz-Marquez, M. and Puerto, J.},
     title = {The generalized {Weber} problem with expected distances},
     journal = {RAIRO - Operations Research - Recherche Op\'erationnelle},
     pages = {35--57},
     publisher = {EDP-Sciences},
     volume = {29},
     number = {1},
     year = {1995},
     mrnumber = {1321539},
     zbl = {0835.90040},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RO_1995__29_1_35_0/}
}
TY  - JOUR
AU  - Carrizosa, E.
AU  - Conde, E.
AU  - Muñoz-Marquez, M.
AU  - Puerto, J.
TI  - The generalized Weber problem with expected distances
JO  - RAIRO - Operations Research - Recherche Opérationnelle
PY  - 1995
SP  - 35
EP  - 57
VL  - 29
IS  - 1
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/item/RO_1995__29_1_35_0/
LA  - en
ID  - RO_1995__29_1_35_0
ER  - 
%0 Journal Article
%A Carrizosa, E.
%A Conde, E.
%A Muñoz-Marquez, M.
%A Puerto, J.
%T The generalized Weber problem with expected distances
%J RAIRO - Operations Research - Recherche Opérationnelle
%D 1995
%P 35-57
%V 29
%N 1
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/item/RO_1995__29_1_35_0/
%G en
%F RO_1995__29_1_35_0
Carrizosa, E.; Conde, E.; Muñoz-Marquez, M.; Puerto, J. The generalized Weber problem with expected distances. RAIRO - Operations Research - Recherche Opérationnelle, Tome 29 (1995) no. 1, pp. 35-57. http://geodesic.mathdoc.fr/item/RO_1995__29_1_35_0/

1. A. A. Aly and A. S. Marucheck, Generalized Weber Problem with Rectangular Regions, Journal of Operational Research Society, 1982, 33, pp. 983-989. | Zbl

2. M. Bazaraa and C. M. Shetty, Nonlinear Programming: Theory and Algorithms, Wiley, 1979. | Zbl | MR

3. R. G. Bland, D. Goldfarb and M. J. Todd, The ellipsoid method: A survey. Operations Research, 1981, 29, pp. 1039-1091. | Zbl | MR

4. C. D. Bennett and A. Mirakhor, Optimal Facility Location with respect to several Regions, Journal of Regional Science, 1974, 14, pp. 131-136.

5. Z. Drezner, Bounds on the optimal Location to the Weber Problem Under Conditions of Uncertainty, Journal of Operational Research Society, 1979, 30, pp. 923-931. | Zbl | MR

6. Z. Drezner, Sensitivity Analysis of the Optimal Location of A Facility, Naval Research Logistic Quaterly, 1985, 32, pp. 209-224. | Zbl | MR

7. Z. Drezner, Location of Regional Facilities, Naval Research Logistic Quaterly, 1986, 33, pp. 523-529. | Zbl

8. Z. Drezner and G. O. Wesoloswky, Optimal Location of a Demand Facility Relative to Area Demand, Naval Research Logistic Quaterly, 1980, 27, pp. 199-206. | Zbl | MR

9. Z. Drezner and G. O. Wesoloswky, Optimum Location Probabilities in the lp distance Weber Problem. Transportation Science, 1981, 75, pp. 85-97.

10. R. Durier and C. Michelot, Geometrical Properties of the Fermat-Weber Problem, European Journal of Operational Research, 1985, 20, pp. 332-343. | Zbl | MR

11. R. L. Francis and J. White, Facility Layout and Location, Prentice Hall, Englewood Cliffs, 1974.

12. M. Grotschel, L. Lovasz and A. Schrijver, The Ellipsoid Method and Combinatorial Optimization, Springer-Verlag, 1986. | Zbl

13. A. D. Ioffe and V. L. Levin, Subdifferentials of Convex Functions, Trans. Moscow Math. Soc., 1972, 26, pp. 1-72. | Zbl | MR

14. H. Juel, Bounds in the Generalized Weber Problem Under Conditions of Uncertainty, Operational Research 1981, 29, pp. 1219-1227. | Zbl | MR

15. D. Kendall, Some Problems in the Theory of Queues, Journal of the Royal Statistical Society Series B, 1951, 13, pp. 151-153. | Zbl | MR

16. T. Koshizuka and O. Kurita, Approximate formulas of average distances associated with regions and their applications to Location Problems, Mathematical Programming, 1991, 52, pp. 99-123. | Zbl | MR

17. R. F. Love, A Computational Procedure for Optimally Locating a Facility respect to Several Rectangular Regions, Journal of Regional Science, 1972, 12, pp. 233-242.

18. A. S. Marucheck and A. A. Aly, An Efficient Algorithm for the Location-Allocation Problem with Rectangular Regions, Naval Research Logistic Quaterly, 1981, 28, pp. 309-323. | Zbl

19. C. Michelot, The Mathematics of Continuous Location, in Special holde VI Issue of Studies in Location Analysis, J. Karkazis and T. B. Boffey (eds.), University of the Aegean/University of Liverpool, 1993, pp. 59-83.

20. F. Plastria, Continuous Location Anno, 1992, a Progress Report, in Special Isolde VI Issue of Studies in Location Analysis, J. Karkazis and T. B. Boffey (eds.), 1993, pp. 85-127.

21. R. T. Rockafellar, Convex Analysis, Princeton University Press, 1970. | Zbl | MR

22. J. E. Ward and R. E. Wendell, A new Norm for Measuring Distance which yields linear Location Problems, Operations Research, 1980, 28, pp. 836-844. | Zbl

23. J. E. Ward and R. E. Wendell, Using block norms for location modelling, Operations Research, 1985, 33, pp. 1074-1090. | Zbl | MR

24. R. E. Wendell and A. P. Hurter, Location Theory, Dominance and Convexity, Operations Research, 1973, 21, pp. 314-320. | Zbl | MR