@article{RM_2024_79_1_a2,
author = {O. V. Pochinka and E. A. Talanova},
title = {Morse-Smale diffeomorphisms with non-wandering points of pairwise different {Morse} indices on 3-manifolds},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {127--171},
year = {2024},
volume = {79},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RM_2024_79_1_a2/}
}
TY - JOUR AU - O. V. Pochinka AU - E. A. Talanova TI - Morse-Smale diffeomorphisms with non-wandering points of pairwise different Morse indices on 3-manifolds JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2024 SP - 127 EP - 171 VL - 79 IS - 1 UR - http://geodesic.mathdoc.fr/item/RM_2024_79_1_a2/ LA - en ID - RM_2024_79_1_a2 ER -
%0 Journal Article %A O. V. Pochinka %A E. A. Talanova %T Morse-Smale diffeomorphisms with non-wandering points of pairwise different Morse indices on 3-manifolds %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2024 %P 127-171 %V 79 %N 1 %U http://geodesic.mathdoc.fr/item/RM_2024_79_1_a2/ %G en %F RM_2024_79_1_a2
O. V. Pochinka; E. A. Talanova. Morse-Smale diffeomorphisms with non-wandering points of pairwise different Morse indices on 3-manifolds. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 79 (2024) no. 1, pp. 127-171. http://geodesic.mathdoc.fr/item/RM_2024_79_1_a2/
[1] V. S. Afraimovich, M. I. Rabinovich, and P. Varona, “Heteroclinic contours in neural ensembles and the winnerless competition principle”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 14:4 (2004), 1195–1208 | DOI | MR | Zbl
[2] P. M. Akhmet'ev, T. V. Medvedev, and O. V. Pochinka, “On the number of the classes of topological conjugacy of Pixton diffeomorphisms”, Qual. Theory Dyn. Syst., 20:3 (2021), 76, 15 pp. | DOI | MR | Zbl
[3] A. Andronov and L. S. Pontryagin, “Coarse systems”, Dokl. Akad. Nauk SSSR, 14:5 (1937), 247–250 (Russian) | Zbl
[4] A. N. Bezdenezhnykh and V. Z. Grines, “Dynamical properties and topological classification of gradient-like diffeomorphisms on two-dimensional manifolds. I”, Selecta Math. Soviet., 11:1 (1992), 1–11 | MR | Zbl
[5] A. N. Bezdenezhnykh and V. Z. Grines, “Realization of gradient-like diffeomorphisms of two-dimensional manifolds”, Selecta Math. Soviet., 11:1 (1992), 19–23 | MR | Zbl
[6] A. N. Bezdenezhnykh and V. Z. Grines, “Dynamical properties and topological classification of gradient-like diffeomorphisms on two-dimensional manifolds. II”, Selecta Math. Soviet., 11:1 (1992), 13–17 | MR | Zbl
[7] C. Bonatti and V. Z. Grines, “Knots as topological invariant for gradient-like diffeomorphisms of the sphere $S^3$”, J. Dynam. Control Systems, 6:4 (2000), 579–602 | DOI | MR | Zbl
[8] Ch. Bonatti, V. Grines, F. Laudenbach, and O. Pochinka, “Topological classification of Morse–Smale diffeomorphisms without heteroclinic curves on 3-manifolds”, Ergodic Theory Dynam. Systems, 39:9 (2019), 2403–2432 | DOI | MR | Zbl
[9] Ch. Bonatti, V. Z. Grines, V. S. Medvedev, and E. Pécou, “On Morse–Smale diffeomorphisms without heteroclinic intersections on three-manifolds”, Proc. Steklov Inst. Math., 236 (2002), 58–69 | MR | Zbl
[10] C. Bonatti, V. Grines, V. Medvedev, and E. Pécou, “Three-manifolds admitting Morse–Smale diffeomorphisms without heteroclinic curves”, Topology Appl., 117:3 (2002), 335–344 | DOI | MR | Zbl
[11] C. Bonatti, V. Grines, V. Medvedev, and E. Pécou, “Topological classification of gradient-like diffeomorphisms on 3-manifolds”, Topology, 43:2 (2004), 369–391 | DOI | MR | Zbl
[12] Ch. Bonatti, V. Z. Grines, and O. V. Pochina, “Classification of Morse–Smale diffeomorphisms with finite sets of heteroclinic orbits on 3-manifolds”, Dokl. Math., 69:3 (2004), 385–387 | MR | Zbl
[13] Ch. Bonatti, V. Z. Grines, and O. V. Pochinka, “Realization of Morse–Smale diffeomorphisms on 3-manifolds”, Proc. Steklov Inst. Math., 297 (2017), 35–49 | DOI | MR | Zbl
[14] C. Bonatti, V. Grines, and O. Pochinka, “Topological classification of Morse–Smale diffeomorphisms on 3-manifolds”, Duke Math. J., 168:13 (2019), 2507–2558 | DOI | MR | Zbl
[15] C. Bonatti and R. Langevin, Difféomorphismes de Smale des surfaces, With the collaboration of E. Jeandenans, Astérisque, 250, Soc. Math. France, Paris, 1998, viii+235 pp. | MR | Zbl
[16] G. Fleitas, “Classification of gradient-like flows on dimensions two and three”, Bol. Soc. Brasil. Mat., 6:2 (1975), 155–183 | DOI | MR | Zbl
[17] V. Z. Grines, “Topological classification of Morse–Smale diffeomorphisms with finite set of heteroclinic trajectories on surfaces”, Math. Notes, 54:3 (1993), 881–889 | DOI | MR | Zbl
[18] V. Z. Grines and E. Ya. Gurevich, “A combinatorial invariant of gradient-like flows on a connected sum of $\mathbb{S}^{n-1}\times\mathbb{S}^1$”, Sb. Math., 214:5 (2023), 703–731 | DOI | MR
[19] V. Z. Grines and E. Ya. Gurevich, “Topological classification of flows without heteroclinic intersections on a connected sum of manifolds $\mathbb{S}^{n-1}\times\mathbb{S}^{1}$”, Russian Math. Surveys, 77:4 (2022), 759–761 | DOI | MR | Zbl
[20] V. Z. Grines, E. Ya. Gurevich, and O. V. Pochinka, “The energy function of gradient-like flows and the topological classification problem”, Math. Notes, 96:6 (2014), 921–927 | DOI | MR | Zbl
[21] V. Z. Grines, E. Ya. Gurevich, and O. V. Pochinka, “On embedding Morse–Smale diffeomorphisms on the sphere in topological flows”, Russian Math. Surveys, 71:6 (2016), 1146–1148 | DOI | MR | Zbl
[22] V. Z. Grines, E. Ya. Gurevich, E. V. Zhuzhoma, and O. V. Pochinka, “Classification of Morse–Smale systems and topological structure of the underlying manifolds”, Russian Math. Surveys, 74:1 (2019), 37–110 | DOI | MR | Zbl
[23] V. Z. Grines and Kh. Kh. Kalai, “On the topological classification of gradient-like diffeomorphisms on irreducible three-dimensional manifolds”, Russian Math. Surveys, 49:2 (1994), 157–158 | DOI | MR | Zbl
[24] V. Z. Grines, S. Kh. Kapkaeva, and O. V. Pochinka, “A three-colour graph as a complete topological invariant for gradient-like diffeomorphisms of surfaces”, Sb. Math., 205:10 (2014), 1387–1412 | DOI | MR | Zbl
[25] V. Z. Grines, T. V. Medvedev, and O. V. Pochinka, Dynamical systems on 2- and 3-manifolds, Dev. Math., 46, Springer, Cham, 2016, xxvi+295 pp. | DOI | MR | Zbl
[26] V. Grines, T. Medvedev, O. Pochinka, and E. Zhuzhoma, “On heteroclinic separators of magnetic fields in electrically conducting fluids”, Phys. D, 294 (2015), 1–5 | DOI | MR | Zbl
[27] V. Grines and O. Pochinka, “On topological classification of Morse–Smale diffeomorphisms”, Dynamics, games and science. II (Univ. of Minho, Braga 2008), Springer Proc. Math., 2, Springer, Heidelberg, 2011, 403–427 | DOI | MR | Zbl
[28] V. Z. Grines and O. V. Pochinka, “Morse–Smale cascades on 3-manifolds”, Russian Math. Surveys, 68:1 (2013), 117–173 | DOI | MR | Zbl
[29] V. Z. Grines, E. V. Zhuzhoma, and V. S. Medvedev, “New relations for Morse–Smale systems with trivially embedded one-dimensional separatrices”, Sb. Math., 194:7 (2003), 979–1007 | DOI | MR | Zbl
[30] V. Z. Grines, E. V. Zhuzhoma, V. S. Medvedev, and O. V. Pochinka, “Global attractor and repeller of Morse–Smale diffeomorphisms”, Proc. Steklov Inst. Math., 271 (2010), 103–124 | DOI | MR | Zbl
[31] V. Z. Grines, E. V. Zhuzhoma, and O. V. Pochinka, “Dynamical systems and topology of magnetic fields in conducting medium”, J. Math. Sci. (N. Y.), 253:5 (2021), 676–691 | DOI | MR | Zbl
[32] W. Hurewicz and H. Wallman, Dimension theory, Princeton Univ. Press, Princeton, NJ, 1948, vii+165 pp. | MR | Zbl
[33] P. Kirk and C. Livingston, “Knot invariants in 3-manifolds and essential tori”, Pacific J. Math., 197:1 (2001), 73–96 | DOI | MR | Zbl
[34] V. E. Kruglov, D. S. Malyshev, O. V. Pochinka, and D. D. Shubin, “On topological classification of gradient-like flows on an $n$-sphere in the sense of topological conjugacy”, Regul. Chaotic Dyn., 25:6 (2020), 716–728 | DOI | MR | Zbl
[35] E. V. Kruglov and E. A. Talanova, “On the realization of Morse–Smale diffeomorphisms with heteroclinic curves on a 3-sphere”, Proc. Steklov Inst. Math., 236 (2002), 201–205 | MR | Zbl
[36] E. A. Leontovich and A. G. Mayer, “One trajectories determining the qualitative structure of the partition of a sphere into trajectories”, Dokl. Akad. Nauk SSSR, 14:5 (1937), 251–257 (Russian) | Zbl
[37] E. A. Leontovich and A. G. Mayer, “A scheme determining the topological structure of a partition into trajectories”, Dokl. Akad. Nauk SSSR, 103:4 (1955), 557–560 (Russian) | MR | Zbl
[38] D. Malyshev, A. Morozov, and O. Pochinka, “Combinatorial invariant for Morse–Smale diffeomorphisms on surfaces with orientable heteroclinic”, Chaos, 31:2 (2021), 023119, 17 pp. | DOI | MR | Zbl
[39] B. Mazur, “A note on some contractible 4-manifolds”, Ann. of Math. (2), 73:1 (1961), 221–228 | DOI | MR | Zbl
[40] J. Milnor, Lectures on the $h$-cobordism theorem, Notes by L. Siebenmann and J. Sondow, Princeton Univ. Press, Princeton, NJ, 1965, v+116 pp. | MR | Zbl
[41] T. M. Mitryakova and O. V. Pochinka, “Necessary and sufficient conditions for the topological conjugacy of surface diffeomorphisms with a finite number of orbits of heteroclinic tangency”, Proc. Steklov Inst. Math., 270 (2010), 194–215 | DOI | MR | Zbl
[42] J. Munkres, “Obstructions to the smoothing of piecewise-differentiable homeomorphisms”, Ann. of Math. (2), 72:3 (1960), 521–554 | DOI | MR | Zbl
[43] W. D. Neumann, “Notes on geometry and 3-manifolds”, Low dimensional topology (Eger, 1996/Budapest 1998), Bolyai Soc. Math. Stud., 8, János Bolyai Math. Soc., Budapest, 1999, 191–267 | MR | Zbl
[44] A. A. Oshemkov and V. V. Sharko, “Classification of Morse–Smale flows on two-dimensional manifolds”, Sb. Math., 189:8 (1998), 1205–1250 | DOI | MR | Zbl
[45] J. Palis, “On Morse–Smale dynamical systems”, Topology, 8:4 (1969), 385–404 | DOI | MR | Zbl
[46] J. Palis and S. Smale, “Structural stability theorems”, Global analysis (Berkeley, CA 1968), Proc. Sympos. Pure Math., 14, Amer. Math. Soc., Providence, RI, 1970, 223–231 | MR | Zbl
[47] M. M. Peixoto, “Structural stability on two-dimensional manifolds”, Topology, 1:2 (1962), 101–120 | DOI | MR | Zbl
[48] M. Peixoto, “Structural stability on two-dimensional manifolds: a further remark”, Topology, 2:1-2 (1963), 179–180 | DOI | MR | Zbl
[49] M. M. Peixoto, “On the classification of flows on 2-manifolds”, Dynamical systems (Univ. Bahia, Salvador 1971), Academic Press, Inc., New York–London, 1973, 389–419 | DOI | MR | Zbl
[50] S. Ju. Piljugin, “Phase diagrams determining Morse–Smale systems without periodic trajectories on spheres”, Differ. Equ., 14:2 (1978), 170–177 | MR | Zbl
[51] D. Pixton, “Wild unstable manifolds”, Topology, 16:2 (1977), 167–172 | DOI | MR | Zbl
[52] O. Pochinka, “Diffeomorphisms with mildly wild frame of separatrices”, Univ. Iagel. Acta Math., 47 (2009), 149–154 | MR | Zbl
[53] O. V. Pochinka and D. D. Shubin, “Nonsingular Morse–Smale flows with three periodic orbits on orientable 3-manifolds”, Math. Notes, 112:3 (2022), 436–450 | DOI | MR | Zbl
[54] O. V. Pochinka and D. D. Shubin, “Non-singular Morse–Smale flows on $n$-manifolds with attractor-repeller dynamics”, Nonlinearity, 35:3 (2022), 1485–1499 | DOI | MR | Zbl
[55] O. V. Pochinka and E. A. Talanova, “Minimizing the number of heteroclinic curves of a 3-diffeomorphism with fixed points with pairwise different Morse indices”, Theoret. and Math. Phys., 215:2 (2023), 729–734 | DOI | MR | Zbl
[56] O. Pochinka and E. Talanova, On the topology of 3-manifolds admitting Morse–Smale diffeomorphisms with four fixed points of pairwise different Morse indices, Cornell Univ., Working paper, 2023, 30 pp., arXiv: 2306.02814
[57] O. Pochinka, E. Talanova, and D. Shubin, “Knot as a complete invariant of a Morse–Smale 3-diffeomorphism with four fixed points”, Sb. Math., 214:8 (2023), 1140–1152 | DOI | MR | Zbl
[58] E. R. Priest, Solar magneto-hydrodynamics, D. Reidel Publishing Co., Dordrecht, 1982, xix+469 pp. | DOI
[59] E. Priest and T. Forbes, Magnetic reconnection. MHD theory and applications, Cambridge Univ. Press, Cambridge, 2000, xii+600 pp. | DOI | MR | Zbl
[60] A. Prishlyak, “Complete topological invariants of Morse–Smale flows and handle decompositions of 3-manifolds”, J. Math. Sci. (N.Y.), 144:5 (2007), 4492–4499 | DOI | MR | Zbl
[61] D. Rolfsen, Knots and links, Math. Lecture Ser., 7, Corr. reprint of the 1976 original, Publish or Perish, Inc., Houston, TX, 1990, xiv+439 pp. | MR | Zbl
[62] V. I. Shmukler and O. V. Pochinka, “Bifurcations changing the type of heteroclinic surves of a Morse–Smale 3-diffeomorphism”, Taurida J. Comput. Sci. Theory Math., 2021, no. 1, 101–114 (Russian)
[63] D. D. Shubin, “Topology of supporting manifolds of non-singular flows with three periodic orbits”, Izv. Vyssh. Uchebn. Zaved. Prikl. Nelinein. Din., 29:6 (2021), 863–868 | DOI
[64] S. Smale, “Morse inequalities for a dynamical system”, Bull. Amer. Math. Soc., 66 (1960), 43–49 | DOI | MR | Zbl
[65] Ya. L. Umanskiĭ, “Necessary and sufficient conditions for topological equivalence of three-dimensional Morse–Smale dynamical systems with a finite number of singular trajectories”, Math. USSR-Sb., 69:1 (1991), 227–253 | DOI | MR | Zbl