Geometry of Diophantine exponents
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 78 (2023) no. 2, pp. 273-347

Voir la notice de l'article provenant de la source Math-Net.Ru

Diophantine exponents are some of the simplest quantitative characteristics responsible for the approximation properties of linear subspaces of a Euclidean space. This survey is aimed at describing the current state of the area of Diophantine approximation that studies Diophantine exponents and relations they satisfy. We discuss classical Diophantine exponents arising in the problem of approximating zero with the set of the values of several linear forms at integer points, their analogues in Diophantine approximation with weights, multiplicative Diophantine exponents, and Diophantine exponents of lattices. We pay special attention to the transference principle. Bibliography: 99 titles.
Keywords: geometry of numbers, Diophantine exponents, transference principle.
Mots-clés : Diophantine approximation
@article{RM_2023_78_2_a1,
     author = {O. N. German},
     title = {Geometry of {Diophantine} exponents},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {273--347},
     publisher = {mathdoc},
     volume = {78},
     number = {2},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_2023_78_2_a1/}
}
TY  - JOUR
AU  - O. N. German
TI  - Geometry of Diophantine exponents
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2023
SP  - 273
EP  - 347
VL  - 78
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RM_2023_78_2_a1/
LA  - en
ID  - RM_2023_78_2_a1
ER  - 
%0 Journal Article
%A O. N. German
%T Geometry of Diophantine exponents
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2023
%P 273-347
%V 78
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RM_2023_78_2_a1/
%G en
%F RM_2023_78_2_a1
O. N. German. Geometry of Diophantine exponents. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 78 (2023) no. 2, pp. 273-347. http://geodesic.mathdoc.fr/item/RM_2023_78_2_a1/